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Abstract

Many singular learning machines such as neural net-
works and mixture models are used in the information
engineering field. In spite of their wide range appli-
cations, their mathematical foundation of analysis is
not yet constructed because of the singularities in the
parameter space. In recent years, we developed the
algebraic geometrical method that shows the relation
between the efficiency in Bayesian estimation and the
singularities. In this paper, we propose a new mathe-
matical method to analyze singular learning machines
based on the Newton diagram and toric deformation.
Using the proposed method, we obtain the exact value
of the asymptotic stochastic complexity, which is a cri-
terion of the model selection, in a mixture of binomial
distributions.

1. Introduction

In the information engineering field, many kinds
of learning machines such as neural networks, mixture
models and Bayesian networks are being used. In spite
of the wide-range applications and technical learning
algorithms, their mathematical properties are not yet
clarified.

All learning models belong to either category, iden-
tifiable or non-identifiable. A learning model is gen-
erally represented as a probability density function
p(x|w), where w is a parameter. When a machine
learns from sample data, its parameter is optimized.
Thus, the parameter determines the probability distri-
bution of the model. If the mapping from the parame-
ter w to p(x|w) is one-to-one, the model is identifiable,
otherwise, non-identifiable.

There are many difficulties in analyzing the non-
identifiable model using the conventional method. If
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the learning model attains the true distribution, the
parameter space contains the true parameter(s). In
non-identifiable models, the set of true parameters is
not one point but an analytic set in the parameter
space. Because the set includes many singularities, the
Fisher information matrices are not positive definite.
Thus, the log likelihood cannot be approximated by
any quadratic form of the parameters in the neighbor-
hood of singularities [1], [11]. That is one of the reasons
why the non-identifiable model cannot be clarified. We
refer to this model as a singular model.

In Bayesian estimation, the stochastic complexity
[6], which is equal to the free energy or the minus
marginal likelihood, is very important. Using this ob-
servable, we can select the optimal size of the model
and derive its generalization error. It is well known
that the stochastic complexity is equivalent to BIC in
identifiable (statistical regular) models [7]. However, it
does not hold in singular models.

In recent years, we have proven that the singu-
larities in the parameter space strongly relate to the
efficiency of the Bayesian estimation based on alge-
braic geometry. This relation reveals that the stochas-
tic complexity is determined by the zeta function of
the Kullback information from the true distribution
to the learning model and of an a priori distribution.
The analysis of the stochastic complexity results in
finding the largest pole of the zeta function. Using
this method, we have clarified the upper bounds of
the stochastic complexities in concrete models, such as
multi-layered perceptrons, mixture models, Bayesian
networks and hidden Markov models [12], [13], [14].
Though we are actually able to analyze these singu-
lar models, it is not easy to find the largest pole. To
find the largest pole is equivalent to find a resolution of
singularities of the Kullback information according to
the algebraic geometrical method [8]. However, if the
Kullback information satisfies a certain non-degenerate
condition (Definition 3 in Section 3), we can systemat-
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ically derive a desingularization based on the Newton
diagram [2], [3]. The problem is that almost singular
models do not satisfy the condition. It seemed impos-
sible to apply the method of the Newton diagram to
these models by choosing an appropriate variable. In
this paper, we propose an algorithm to make the Kull-
back information satisfy the condition and apply the
algorithm to a mixture of binomial distribution, and
reveal the stochastic complexity. The method with the
Newton diagram shows advantages to analyze singular
learning machines.

2. Bayesian Learning, Stochastic Complexity
and Algebraic Geometry

In this section, we introduce the standard frame-
work of Bayesian estimation. They are well known in
statistical learning theory.

Let Xn = (X1, X2, · · · , Xn) be a set of training
samples that are independent and identical, where n
is the number of training samples. These and the test-
ing samples are taken from the true probability distri-
bution q(x). Let p(x|w) be a learning model. The a
priori probability distribution ϕ(w) is given on the set
of parameters W . The a posteriori probability distri-
bution is defined by

p(w|Xn) =
1

Z0(Xn)
ϕ(w)

n
∏

i=1

p(Xi|w),

where Z0(X
n) is the normalizing constant. The

Bayesian predictive distribution p(x|Xn) is given by

p(x|Xn) =

∫

p(x|w)p(w|Xn)dw.

The generalization error G(n) is the average Kullback
information from the true distribution to the Bayesian
predictive distribution,

G(n) = EXn

[

∫

q(x) log
q(x)

p(x|Xn)
dx

]

,

where EXn stands for the expectation value over all
sets of training samples. We define another normalizing
constant Z(Xn),

Z(Xn) =

∫

exp(−nHn(w))ϕ(w)dw,

Hn(w) =
1

n

n
∑

i=1

log
q(Xi)

p(Xi|w)
.

The stochastic complexity is defined by

F (Xn) = − log Z(Xn).

We can select the optimal model and hyperparameters
by minimizing − log Z0(X

n). This is equivalent to min-
imizing the stochastic complexity, since

− log Z0(X
n) = − log Z(Xn) + S(Xn),

S(Xn) = −

n
∑

i=1

log q(Xi),

where the empirical entropy S(Xn) is independent of
the learners. The average stochastic complexity F (n)
is defined by

F (n) = −EXn

[

log Z(Xn)
]

. (1)

The relation is well known [5], [10],

G(n) = F (n + 1) − F (n).

Thus, it is very important to clarify F (n).
We define the Kullback information from the true

distribution q(x) to the learner p(x|w) by

H(w) =

∫

q(x) log
q(x)

p(x|w)
dx, (2)

and the zeta function by

J(z) =

∫

H(w)zϕ(w)dw. (3)

It is known that this function has real, negative and
rational poles. Using a resolution of singularities g(·)
in the algebraic geometrical method [8], [9], we can
represent H(w) as

H(g(u)) = ua1

1 ua2

2 · · ·uad

d . (4)

Then, we can find the largest pole −λ and the order m
by integrating J(z). The asymptotic expansion of the
stochastic complexity is described as

F (n) = λ log n − (m − 1) log log n + o(1).

The generalization error can be rewritten as

G(n) = λ/n + o(1/n).

3. Newton Diagram and Resolution of Singu-
larities

In this section, we introduce the Newton diagram
and the relation to a resolution of singularities.

Let the Taylor expansion of an analytic function
H(w) be

H(w) =
∑

v

cvwv,

where w = (w1, · · · , wd) ∈ W ⊂ Rd, v = (v1, · · · , vd) ∈
Q ⊂ Zd and cv is a constant. We use the notation that

wv ≡ wv1

1 wv2

2 · · ·wvd

d .
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Definition 1 The convex hull of the subset

{v + v′; cv 6= 0, v′ ∈ Rd
+}

is referred to as the Newton diagram Γ+(H).

Let us define a constant vector a ∈ Zd and

l(a) ≡ min{〈v, a〉; v ∈ Γ+(H)},

where 〈, 〉 is the inner product, 〈v, a〉 =
∑d

i=1
aivi.

Definition 2 A face of Γ+(H) is defined by

γ(a) ≡ {v ∈ Γ+(H); 〈v, a〉 = l(a)}.

Intuitively, the face is the border of the Newton di-
agram. Depending on a face γ, a polynomial fγ is
defined by

fγ(w) ≡
∑

v∈γ

cvwv.

Definition 3 The function H(w) is said to be non-
degenerate if and only if
{

w ∈ Rd;
∂fγ

∂w1

(w) = · · · =
∂fγ

∂wd

(w) = 0

}

⊂{w1 · · ·wd = 0}

for an arbitrary compact face γ of Γ+(H). If otherwise,
H(w) is said to be degenerate.

Consider the dual space P ⊂ Zd of Q.

Definition 4 The orthogonal vectors to faces are
called a fan.

Consider the parallelogram constituted by arbitrary
two vectors. If it includes a point of P , add the vector
from the origin to the point.

Definition 5 Subdivision of Γ+(H) is defined by
adding the vectors until there is no point in the par-
allelograms.

For a matrix

A =







a1
1 · · · ad

1

...
. . .

...
a1

d · · · ad
d






,

and w, u ∈ Rd, we define

w = uA ⇔















w1 = u
a1

1

1 · · ·u
ad

1

d
...

wd = u
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d
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d
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Figure 1: (a) the Newton diagram, (b) the fan, (c) the
subdivided fan

where a set of a1 = (a1
1, · · · , a

1
d), · · · , ad = (ad

1 , · · · , a
d
d)

is a partof the subdivided fan. By using the above def-
initions, Theorem 1 is known which relates the Newton
diagram to a resolution of singularities [3].

Theorem 1 The map π(u) : w = uA, where det A =
±1 is called a real toric modification. The map
π−1(U0) → W , where U0 ⊂ Rd is a neighborhood of
the origin, is a resolution of singularities if the func-
tion H(w) is non-degenerate.

Theorem 1 claims that a resolution of singularities
is determined by a set of all π(u). In other words, the
space W consists of the union of local coordinatates
constituted by each A.

Example 1 Assume H(w) is defined by

H(w) = w5
1 + w3

1w
3
2 + w2

1w
2
2 + w5

2,

where w = (w1, w2), v = (5, 0), (3, 3), (2, 2), (0, 5) and
cv = 1. Then, the Newton diagram is depicted by the
shaded area (Fig. 1 (a)) and it has four faces, f1, f2,
[(0, 5), (0,∞)], [(5, 0), (∞, 0)]. (Figure 1 (a)). It is easy
to show the function H(w) is non-degenerate. Then,
the fan and the subdivided one of the Newton diagram
are respectively depicted by Fig. 1 (b) and (c). We can
select two vectors, (3, 2), (1, 1) from the subdivided fan.
The map g(u1, u2) is defined by

{

w1 = u3
1u

1
2

w2 = u2
1u

1
2

.

This gives an intended expression (4) of H(w),

H(g(u)) = u10
1 u4

2(u
5
1u2 + u5

1u
2
2 + 1 + u2).

The above example shows that a resolution map
is found which makes the function H(w) rewritten as
the expression (4) based on the Newton diagram. In
order to find the largest pole of the zeta function de-
termined by the equation (3), the problem comes down
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to find the efficient vectors of the subdivided fan in the
Newton diagram. The largest pole depends on the ra-
tio between the Jacobian |g′(u)| and the power of the
common factor in H(g(u)). If a vector of the subdi-

vided fan is aj and H(g(u)) has the common factor uβ
j ,

the vector settles a pole −α/β, where α =
∑

i aj
i .

4. Main Results

In this section, let us introduce the algorithm and
apply it to a mixture of binomial distributions.

4.1. Proposed Algorithm

We introduce an algorithm to change a degenerate
Kullback information into non-degenerate. At first, we
assume the following condition,

(A1) Assume that the Kullback information (2) is de-
generate because the Newton diagram has a face such
that

(ζ + h(w))2,

where ζ is one of parameters w and h(w) is a polyno-
mial of w.

Let H(w) include the term,

(ζ + h(w) + h′(w))2,

where h′(w) is a higher order polynomial of w than
h(w). This means the terms of h′(w) are inside of the
Newton diagram since ζ, h(w) constitute the face.

Next, the following is the proposed algorithm of this
paper.

Algorithm 1 (Step 1) Define the map Π : w → w′,

ζ′ ≡ ζ + h(w) + h′(w).

(Step 2) According to the map Π, redraw the Newton
diagram of H(Π−1(w′)).

(Step 3) If H(Π−1(w′)) is degenerate and satisfies the
condition (A1), regard w′ as w and go to (Step 1).
Otherwise, return H(Π−1(w′)).

Using this algorithm, we can reveal the stochastic
complexity of some learning machines.

4.2. Mixture of Binomial Distributions

A mixture of binomial distributions is defined by

p(x = k|w) =

(

N
k

)

{

K+1
∑

i=1

aip
k
i (1 − pi)

N−k

}

, (5)

where N, K are integers such that K < N , k =
0, 1, · · · , N , (N k)T is the number of combination of
N elements taken k at a time, and

w = ({ai}
K
i=1, {pi}

K+1

i=1 )

is a parameter such that 0 < pi ≤ 1/2, ai ≥ 0, and

aK+1 = 1 −

K
∑

i=1

ai.

A binomial distribution is defined by
(

N
k

)

p̄k(1 − p̄)N−k,

where 1 < p̄ ≤ 1/2. Thus, the mixture (5) has K + 1
components.

This learning machine is used for the gene analysis
and the mutational spectrum analysis [4].

4.3. Application of Algorithm

Assume that a learning machine consists of two
components, and the true distribution consists of one
component,

p(x = k|w)

=

(

N
k

)

{

apk
1(1 − p1)

N−k + (1 − a)pk
2(1 − p2)

N−k
}

,(6)

q(x = k) =

(

N
k

)

p∗k(1 − p∗)N−k, (7)

where 0 < p∗ ≤ 1/2, 0 < a∗ < 1 are constants. Based
on the proposed algorithm and the method of the New-
ton diagram, we prove the following theorem.

Theorem 2 If the learning machine is given by the
equation (6) and the true distribution is given by the
equation (7), then, for a sufficiently large natural num-
ber n, the stochastic complexity satisfies the equation,

F (n) =
3

4
log n + C,

where C is a constant independent of n.

(Proof of Theorem 2) By using some analytic eval-
uations, it follows that

C1H(w1) ≤ H(Θ−1

1 (w1)) ≤ C2H(w1),

where C1, C2 are positive constants independent of w1,
the map Θ1 : w → w1,

a ≡ a′,

p′1 ≡ p1 − p∗,

p′2 ≡ p2 − p∗,
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