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Desingularization and the Generalization Error

of Reduced Rank Regression in Bayesian Estimation
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Abstract: Reduced rank regression, or a three-layer neural network with linear hidden
units, is an important learning machine because it extracts the essential information from
training samples. However, its generalization error had been left unknown because of its
singularities in the parameter space. In this paper, we propose a new method of recursive
blowing-ups for densingularization of a learning machine. By applying it to the reduced
rank approximation, we show the effectiveness of the method and clarify the asymptotic
generalization error of the reduced rank regression.
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1 Introduction

Reduced rank regression is understood that it can
be thought as a three-layer neural network with linear
hidden units [3]. This method picks up the essential
information from examples of input-output pairs. It
is a non-regular statistical model which has a degen-
erate Fisher information matrix. Therefore the theory
of regular statistical models, for example, model selec-
tion methods AIC[1], TIC[11], HQ[5], NIC[7], BIC[10],
MDL[8], cannot be applied to the reduced rank ap-
proximation, as it is non-regular.

Recently, the new method to calculate the asymp-
totic form of the Bayesian stochastic complexity has
been introduced, using the method of resolution of sin-
gularities [12, 13, 14].

Let x ∈ RM be an input, y ∈ RN an output and
w ∈ W ⊂ Rd a parameter. Consider a learning ma-
chine p(x, y|w) and a fixed a priori probability density
function ψ(w). Assume that the true probability dis-
tribution p(x, y|w0) is contained in the learning model.

Let Xn = (X1, ..., Xn) and Y n = (Y1, ..., Yn) be arbi-
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trary n training samples which are independently taken
from the true probability distribution p(x, y|w0). The
a posteriori probability density function
p(w|Xn, Y n) is written by

p(w|Xn, Y n) =
1

Zn
ψ(w)

n∏

i=1

p(Xi, Yi|w),

where

Zn =
∫

W

ψ(w)
n∏

i=1

p(Xi, Yi|w)dw.

Then the average inference p(x, y|Xn, Y n) of the
Bayesian distribution is given by

p(x, y|Xn, Y n) =
∫

p(x, y|w)p(w|Xn, Y n)dw.

Let G(n) be the generalization error or the learning
efficiency

G(n) := En{
∫

p(x, y|w0) log
p(x, y|w0)
p(x, y|Xn)

dxdy},

where En{} is the expectation value over all sets of n

training samples.
Then the average stochastic complexity or the free

energy

F (n) := −En{log
∫

exp(−nKn(w))ψ(w)dw},

satisfies
G(n) = F (n + 1)− F (n),

where

Kn(w) =
1
n

n∑

i=1

log
p(Xi, Yi|w0)
p(Xi, Yi|w)

.



Let J(z) be the zeta function of the learning model

J(z) :=
∫

K(w)zψ(w)dw,

where K(w) is the Kullback distance

K(w) :=
∫

p(x, y|w0) log
p(x, y|w0)
p(x, y|w)

dx.

Then, we have

G(n) ∼= λ/n− (m− 1)/(n log n), (1)

and

F (n) = λ log n− (m− 1) log log n + O(1), (2)

where −λ is the maximum pole of J(z), m is its order,
and O(1) is a bounded function of n.

The values λ and m can be calculated by using the
blowing-up process.

In [16], the upper bound of the constant λ for the
reduced rank regression models was obtained, but not
the exact value for λ.

In this paper, we use the recursive blowing-ups to
obtain the exact values λ and m for the reduced rank
regression models, and give the asymptotic form of the
generalization energy explicitly. We show that desin-
gularization is effective to analyze zeta functions for
learning theory.

2 Resolution of singularities

In this section, we introduce Hironaka’s Theorem [6]
on the resolution of singularities and the construction
of blowing up. The blowing up is the main tool in the
resolution of singularities of an algebraic variety. We
also show its application in the field of learning theory
[12, 13, 14].

Theorem[Hironaka [6]]
Let f be a real analytic function in a neighborhood

of w = (w1, · · · , wd) ∈ Rd with f(w) = 0. There exists
an open set V 3 w, a real analytic manifold U and a
proper analytic map µ from U to V such that

(1) µ : U − E → V − f−1(0) is an isomorphism,
where E = µ−1(f−1(0)),

(2) for each u ∈ U , there are local analytic coordi-
nates (u1, · · · , un) such that

f(µ(u)) = ±us1
1 us2

2 · · ·usn
n ,

where s1, · · · , sn are non-negative integers.

The above theorem is one of analytic versions of the
Hironaka’s theorem used by Atiyah [2].

Consequently, we have
Theorem[Atiyah [2], Bernstein [4], Sato & Shintani
[9]]

Let f(w) be an arbitrary analytic function of vari-
ables w ∈ Rd, g(w) be an arbitrary C∞− function
with compact support W , where g(0) > 0.

Then
ζ(z) =

∫

W

|f(w)|zg(w)dw,

is a holomorphic function in the right-half plane.
Furthermore, ζ(z) can be analytically continued to a

meromorphic function on the entire complex plane. Its
poles are negative rational numbers.

Apply Hironaka’s theorem to the Kullback distance
K(w). For each w ∈ K−1(0) ∩ W , we have a proper
analytic map µ from a neighborhood Vw of w to an
analytic manifold Uw, which satisfy the above (1) and
(2). Then the local integration on Vw of K(w)zψ(w)
is written by

Jw(z) =
∫

Vw

K(w)zψ(w)dw

=
∫

Uw

(us1
1 us2

2 · · ·usn
n )zψ(µ(u))|µ′(u)|du.

Therefore the poles of Jw(z) can be obtained. For
w ∈ W \ K−1(0), there exists a neighborhood Vw of
w such that K(w′) 6= 0, w′ ∈ Vw and so Jw(z) =∫

Vw
K(w)zψ(w)dw has no poles.

Since the set of parameters W is compact, we obtain
the poles and their orders of J(z).

Next we explain the construction of blowing up.
There are three kinds of blowing up, i.e., blowing

up at the point, blowing up along the manifold and
blowing up with respect to the coherent sheaf of ideals.
The blowing up along the manifold includes blowing
up at the point. The blowing up with respect to the
coherent sheaf of ideals includes blowing up along the
manifold.

Here let us explain only the blowing up along the
manifold used in this paper.

Define a manifold M by gluing k open sets Ui
∼= Rd,

i = 1, 2, · · · , k, d ≥ k as follows.



Denote the coordinate of Ui by (ξ1i, · · · , ξdi).
Define the equivalence relation

(ξ1i, ξ2i, · · · , ξdi) ∼ (ξ1j , ξ2j , · · · , ξdj)

at ξji 6= 0 and ξij 6= 0, by ξij = 1/ξji, ξjj = ξiiξji, ξhj =
ξhi/ξji(1 ≤ h ≤ k, h 6= i, j), ξ`j = ξ`i(k + 1 ≤ ` ≤ d).
Set M =

∐k
i=1 Ui/ ∼.

Also define π : M→ Rd by

Ui 3 (ξ1i, · · · , ξni);
7→ (ξiiξ1i, · · · , ξiiξi−1i, ξii, ξiiξi+1i, · · · , ξiiξki,

ξk+1i, · · · , ξdi).

This map is well-defined and called the blowing up
along

X = {(w1, · · · , wk, wk+1, · · · , wd) ∈ Rd |
w1 = · · · = wk = 0}.

The blowing map satisfies
(1) π : M→ Rd is proper,
(2) π : M− π−1(X) → Rd −X is isomorphic.

3 Application to reduced

rank regression models

In this section, we show how to obtain the maximum
pole of the zeta function of learning models in the case
of the reduced rank regression models.

Let

{w = (A,B) | A is an H ×M matrix,
B is an N ×H matrix}

be the set of parameters.
We define the norm of any matrix T = (tij) by

||T || =
√∑

i,j |tij |2.
Denote the input value by x with a probability den-

sity function q(x). Assume that all eigenvalues of the
M ×M matrix X = (

∫
xixjq(x)dx) are positive num-

bers. That is, X is a positive definite.
Then the output value y of the reduced rank regres-

sion model is given by

y = BAx + (noise).

Consider the statistical model

p(y|x,w) =
1

(
√

2π)N
exp(−1

2
||y −BAx||2).

Assume that the a priori probability density func-
tion ψ(w) is a C∞− function with compact support
W where ψ(A0, B0) > 0 and that the true parameters
w are w = (A0, B0).

Lemma 1 There exist c1 > 0 and c2 > 0 such that

c1||BA−B0A0||2 ≤ K(w) ≤ c2||BA−B0A0||2. (3)

Proof.
Put

q(x, y) = p(y|x, (A0, B0))q(x).

Then we have the Kullback information

K(w) =
∫

q(x, y) log
p(y|x, (A0, B0))

p(y|x,w)
dxdy

=
1
2

∫
||(BA−B0A0)x||2q(x)dx.

Put S = BA − B0A0 = (si,j) and let Q be an or-
thogonal matrix such that QtXQ is diagonal.

Then, we have

K(w) =
1
2

∫
||Sx||2q(x)dx

=
1
2

∫ ∑

i

(
∑

j

sijxj)2q(x)dx

=
1
2

∑

i,j1,j2

sij1sij2

∫
xj1xj2q(x)dx

=
1
2
Tr(SXSt) =

1
2
Tr(SQQtXQ(SQ)t).

Since we assume all eigenvalues of X are positive
numbers, there exist c1 > 0 and c2 > 0 such that

c1Tr(SQ(SQ)t) = c1Tr(SSt)

≤ K(w) ≤ c2Tr(SQ(SQ)t) = c2Tr(SSt).

Since Tr(SSt) = ||S||2, we complete the proof.
Q.E.D.

Lemma 2 [15]
Let f(w), f1(w), f2(w) be an analytic function of

variables w ∈ Rd. Let g(w), g1(w), g2(w) be a C∞−
function with compact support W .

Put
ζ(z) =

∫

W

|f(w)|zg(w)dw.

Denote the maximum pole of ζ(z) by −Λ(f, g).
Then if |f1| ≤ |f2| and g1 ≥ g2, we have

Λ(f1, g1) ≤ Λ(f2, g2).

Furthermore, for any number a ∈ R− {0},

Λ(af, g) = Λ(f, ag) = Λ(f, g).



Lemma 1 and Lemma 2 yield that the zeta function
can be written as follows:

J(z) =
∫

W

||BA−B0A0||2zψ(w)dw.

Main Theorem

Let r be the rank of B0A0.
The maximum pole −λ of J(z) is

max{− (N + M)r − r2 + s(N − r)
2

− (M − r − s)(H − r − s)
2

|
0 ≤ s ≤ min{M + r,H + r}}.

Furthermore, G(n) and F (n) in Equation (1) and
(2) are given by using the following maximum pole −λ

of J(z) and its order m:
(1) Let N + r ≤ M +H, M + r ≤ N +H and H + r ≤
M + N .

(a) If M + H + N + r is even, then m = 1 and

λ =
−(H + r)2 −M2 −N2

8

+
2(H + r)M + 2(H + r)N + 2MN

8
.

(b) If M + H + N + r is odd, then m = 2 and

λ =
−(H + r)2 −M2 −N2

8

+
2(H + r)M + 2(H + r)N + 2MN + 1

8
.

(2) Let M + H < N + r. Then m = 1 and

λ =
HM −Hr + Nr

2
.

(3) Let N + H < M + r. Then m = 1 and

λ =
HN −Hr + Mr

2
.

(4) Let M + N < H + r. Then m = 1 and

λ =
MN

2
.

In order to prove Main Theorem, we need the fol-
lowing three lemmas.

Let Mat(H ′, M ′) be the set of H ′×M ′ matrices with
real values.

Lemma 3 Let U be a neighborhood of θ0 ∈ R`. Also
let T1(θ), T2(θ), T (θ) be any functions from U to
Mat(N ′,H ′), Mat(N ′,M ′), Mat(H ′,M ′) respectively.

Assume that the function ||T (θ)|| is bounded.
Then, there exist positive numbers α > 0 and β > 0

such that

α(||T1||2 + ||T2||2) ≤ ||T1||2 + ||T2 + T1T ||2

≤ β(||T1||2 + ||T2||2).

Proof.
Since ||T (θ)|| is bounded, there exists β > 3 such

that

||T1||2 + ||T2 + T1T ||2

≤ (||T1||2 + 2||T2||2 + 2||T1T ||2)
≤ β(||T1||2 + ||T2||2).

Also, there exists γ > 3 such that

||T2||2 ≤ 2(||T2 + T1T ||2 + || − T1T ||2)
≤ 2(||T2 + T1T ||2 + γ||T1||2),

and hence

||T1||2 + ||T2||2 ≤ 2||T2 + T1T ||2 + (2γ + 1)||T1||2)
≤ (2γ + 1)(||T2 + T1T ||2 + ||T1||2).

By putting α = 1/(2γ + 1), we complete the proof.
Q.E.D.

Lemma 4 Let U be a neighborhood of θ0 ∈ R`. Also
let T (θ) be any function from U to Mat(H ′,M ′).

Let P0, Q0 be any regular M ′×M ′, H ′×H ′ matrices,
respectively.

Then there exist positive numbers α > 0, β > 0 such
that

α||T ||2 ≤ ||P0TQ0||2 ≤ β||T ||2.

Proof.
There exists β > 0 such that

||P0TQ0||2 ≤ β||T ||2.

Also, there exists γ > 0

||T ||2 = ||P−1
0 P0TQ0Q

−1
0 ||2 ≤ γ||P0TQ0||2.

By putting α = 1/γ, we complete the proof.
Q.E.D.



Lemma 5 Put

Ψ = ||BA−B0A0||2.

Then there exist a function Ψ′ and an a priori prob-
ability density function ψ′(w′) such that

(a)

Ψ′ = ||C1||2 + ||C2||2 (4)

+||C3||2 + ||B4A4||2

where C1 is an r×r matrix, C2 is an (N −r)×r

matrix, C3 is an r × (M − r) matrix, A4 is an
(H−r)× (M −r) matrix and B4 is an (N −r)×
(H − r) matrix,

(b) ψ′(w′) is a C∞− function with compact support
W ′, where w′ = (C1, C2, C3, B4, A4) and ψ′(0) >

0,

(c) the maximum pole of
∫

W
Ψzψdw is equal to the

one of
∫

W ′ Ψ′zψ′dw′.

Proof.
Since the rank B0A0 is r, there exists regular matri-

ces P0, Q0 such that P0B0A0Q0 =

(
E 0
0 0

)
, where

E is the r × r unit matrix.
Change variables from B, A to B′, A′ by B′ = P−1

0 B

and A′ = AQ−1
0 .

Then

Ψ =

∥∥∥∥∥P0(B′A′ −
(

E 0
0 0

)
)Q0

∥∥∥∥∥

2

.

Let A′ =

(
A1 A3

A2 A4

)
and B′ =

(
B1 B3

B2 B4

)
,

where

A1 is an r × r matrix,
A3 is an r × (M − r) matrix,
A2 is an (H − r)× r matrix,
A4 is an (H − r)× (M − r) matrix,
B1 is an r × r matrix,
B3 is an r × (H − r) matrix,
B2 is an (N − r)× r matrix,
B4 is an (N − r)× (H − r) matrix.

Let U(A′,B′) be a sufficiently small neighborhood of
any point (A′, B′) with

B′A′ −
(

E 0
0 0

)
= 0.

Since the rank
(

B1 B3

)(
A1

A2

)
is r, we can as-

sume A1 is regular. Thus we can change the variables
from B1, B2 to C1, C2 by C1 = B1A1 + B3A2 −E and
C2 = B2A1 + B4A2. Also changing the variables from
A4 to A′4 by A′4 = −A2A

−1
1 A3 +A4 and from A3 to A′3

by A′3 = A−1
1 A3 gives

B′A′ −
(

E 0
0 0

)
=

(
C1 C1A

′
3 + A′3 + B3A

′
4

C2 C2A
′
3 + B4A

′
4

)
.

By changing the variables from A′3 to A′′3 by A′′3 =
A′3 + B3A

′
4, we obtain

Ψ = ∥∥∥∥∥P0

(
C1 C1(A′′3 −B3A

′
4) + A′′3

C2 C2(A′′3 −B3A
′
4) + B4A

′
4

)
Q0

∥∥∥∥∥

2

.

By Lemma 2 and Lemma 4, the maximum pole of∫
U(A′,B′)

Ψzψdw is equal to the one of

∫

U(A′,B′)

∥∥∥∥∥

(
C1 C1(A′′3 −B3A

′
4) + A′′3

C2 C2(A′′3 −B3A
′
4) + B4A

′
4

)∥∥∥∥∥

2z

ψdw.

Then Lemma 2 and Lemma 3 yield that the maxi-
mum pole of

∫
U(A′,B′)

Ψzψdw is equal to the one of

∫

U(A′,B′)

Ψ′zψdw (5)

=
∫

U(A′,B′)

∥∥∥∥∥

(
C1 A′′3
C2 B′

4A
′
4

)∥∥∥∥∥

2z

ψdw.

Let C3 = A′′3 , A4 = A′4 and

ψ′(C1, C2, C3, A4, B4) = ψ(A, B).

The proof follows from the fact that the poles of
the above function is same when (A′, B′) with B′A′ −(

E 0
0 0

)
= 0 varies.

Q.E.D
Before proving Main Theorem, let us give some no-

tation.
Since we often change the variables during the blow-

ing up process, it is more convenient for us to use the
same symbols aij rather than a′ij , a′′ij , · · ·, etc, for the
sake of simplicity. For instance,

“Let

{
a11 = u11

aij = u11aij , (i, j) 6= (1, 1).
”

instead of

“Let

{
a11 = u11

aij = u11a
′
ij , (i, j) 6= (1, 1).

”



Proof of Main Theorem.

Let A4 =




a11 · · · a1,M−r

a21 · · · a2,M−r

...
aH−r,1 · · · aH−r,M−r




,

B4 =




b11 · · · b1,H−r

b21 · · · b2,H−r

...
bN−r,1 · · · bN−r,H−r




.

Suppose that C1, C2 and C3 are as in Lemma 4. We
need to calculate poles of the following function by us-
ing the blowing up process together with an inductive
method.

Assume

Ψ′′(s) = ||C1||2 + ||C2||2 + ||C3||2 +
s∑

i=1

||bi||2

+||
s∑

i=1

biDi + B(s+1)A(s+1)||2, (6)

where for i = 1, · · · ,H − r, bi =




b1i

...
bN−r,i


,

B(s+1) =




b1,s+1 · · · b1,H−r

b2,s+1 · · · b2,H−r

...
bN−r,s+1 · · · bN−r,H−r




and

A(s+1) =




as+1,s+1 · · · as+1,M−r

as+2,s+1 · · · as+2,M−r

...
aH−r,s+1 · · · aH−r,M−r




.

Di(akl) is a function of the entries of the matrix A4

excluding the entries of A(s+1). The definition of the
function Di(akl) will be given recursively in Equation
(7) below.

Now we apply the induction method to Equation (6).
Let C1 = (c(1)

ij ), C2 = (c(2)
ij ) and C3 = (c(3)

ij ).
Construct the blowing up of Ψ′′ in (6) along the sub-

manifold
{C1 = C2 = C3 = bi = A(s+1) = 0, 1 ≤ i ≤ s}.

Let





c
(1)
11 = v, c

(1)
ij = vc

(1)
ij , (i, j) 6= (1, 1),

bj = vbj , 1 ≤ j ≤ s, C2 = vC2,

C3 = vC3, A
(s+1) = vA(s+1).

Substituting them into Equation (6) gives

Ψ′′ = v2(1 +
∑

(i,j)6=(1,1)

(c(1)
ij )2 + ||C2||2 + ||C3||2

+
s∑

i=1

||bi||2 + ||
s∑

i=1

biDi + B(s+1)A(s+1)||2).

Here the Jacobian is

v(N+M)r−r2+s(N−r)+(M−r−s)(H−r−s)−1.

Therefore we have the pole
−((N+M)r−r2+s(N−r)+(M−r−s)(H−r−s))/2.

If we set either of c
(1)
ij = u, c

(2)
ij = u, c

(3)
ij = u, bij = u

for any (i, j), we obtain the same pole by symmetry.
Next let




as+1,s+1 = u, aj` = uaj`

s + 1 ≤ j ≤ H − r, s + 1 ≤ ` ≤ M − r,

(j, `) 6= (s + 1, s + 1)
C1 = uC1, C2 = uC2, C3 = uC3,

bi = ubi, 1 ≤ i ≤ s.
We also obtain the same pole by setting aj` = u for

any (j, `).
Substituting our new variables into Equation (6) im-

plies

Ψ′′ = u2(||C1||2 + ||C2||2 + ||C3||2

+
s∑

i=1

||bi||2 + ||
s∑

i=1

biDi +

(
bs+1 B(s+2)

) (
1 ãs+1

as+1 A(s+2)

)
||2)

= u2(||C1||2 + ||C2||2 + ||C3||2 +
s∑

i=1

||bi||2

+||
s∑

i=1

biDi +
(
bs+1 + B(s+2)as+1 0

)

+
(

bs+1 B(s+2)
) (

0
ãs+1

A(s+2)

)
||2),

where ãs+1 = (as+1,s+2 · · · as+1,M−r) and as+1 =T

(as+2,s+1 · · · aH−r,s+1) ( T denotes the transpose).
Denote the first column of Di by Di. Let Di =

(Di D′
i).

Put bs+1 = bs+1 + B(s+2)as+1 +
∑s

i=1 biDi. Then

Ψ′′/u2 = ||C1||2 + ||C2||2 + ||C3||2 +
s+1∑

i=1

||bi||2

+ ||
s∑

i=1

bi(D′
i −Diãs+1) + bs+1ãs+1

+B(s+2)(−as+1ãs+1 + A(s+2))||2.

Now let A(s+2) = −as+1ãs+1 + A(s+2). Then,

Ψ′′/u2 = ||C1||2 + ||C2||2 + ||C3||2 +
s+1∑

i=1

||bi||2



+||
s∑

i=1

bi(D′
i −Diãs+1)

+bs+1ãs+1 + B(s+2)A(s+2)||2.

Repeat this whole process by setting

Di = D′
i −Diãs+1 (1 ≤ i ≤ s) and Ds+1 = ãs+1.

(7)
Then s will be replaced by s + 1 in (6) and so on.

Therefore the poles are
−((N+M)r−r2+s(N−r)+(M−r−s)(H−r−s))/2,

for s = 0, · · · , min{H − r,M − r} and so Main The-
orem follows.

Q.E.D.

4 Discussion and Conclusion

In this paper, we introduce a recursive blowing up
method to obtain the maximum pole of the zeta func-
tions for the reduced rank regression models.

Note that if the rank r of A0B0 is zero, then H,
M and N can be permuted in the formula λ of Main
Theorem.

Figure 1 shows the graphs of the maximum poles λ

with λ-values in y-axis and H-values in x-axis, when
M = N = 10 and r = 0. It is clear that the curve is
not linear.

Significance of the obtained result from the view-
point of learning theory is as follows.

First, our results enable us to construct mathemati-
cal foundation for analyzing and developing the preci-
sion of the MCMC method. By the MCMC method,
the estimated values of marginal likelihoods for hyper-
parameter estimation and model selection methods of
complex learning models, had been calculated, but the
theoretical values were not known. Now, we formu-
lated the theoretical value of marginal likelihoods in
this paper. Then we can compare the calculated val-
ues and the theoretical values.

Second, we can discuss the model selection prob-
lem for Bayesian estimation, although it is still open
problem for non-regular models. For regular models,
λ = d/2 and m = 1, where d is the dimension of the
parameter space. In other words, it does not depend
on the true distribution. However, non-regular mod-
els have λ depending on the true distribution and it
is smaller than d/2. Non-regular models are better

learning machines than regular ones provided that the
Bayes estimation is applied.

In general, the algebraic method will lead us to solve
the difficult problems of learning theory. In particular,
this method can be used to compute the asymptotic
forms for all possible cases not only the reduced rank
regression models. Our aim is to develop a mathemat-
ical theory in that context.
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図 1: The curve of λ-values in y-axis and H-values in
x-axis, when M = N = 10.


