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ABSTRACT

In this paper, we obtain the asymptotic forms of the gen-
eralization errors for some three layered learning models
in Bayesian estimation. The generalization error measures
how precisely learning models can approximate true den-
sity functions which produce learning data. We use a recur-
sive blowing up process for analyzing the Kullback func-
tion of the learning model. Then, we have the maximum
pole of its zeta function which is defined by the integral of
the Kullback function and aa priori probability density
function. In [1, 2], it was proved that the maximum pole
of the zeta function asymptotically gives the generalization
error of the hierarchical learning model.
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1 Introduction

Hierarchical learning models are such as a layered neural
network, reduced rank regression, a normal mixture model
and a Boltzmann machine. These are known as effec-
tive learning models for analyzing complicated data prac-
tically. Therefore the generalization errors (learning effi-
ciency) of these models may be smaller than those of reg-
ular statistical models. However, their generalization er-
rors cannot be analyzed by using classic theories of regular
statistical models, for example, model selection methods
AIC[3], TIC[4], HQ[5], NIC[6], BIC[7], MDL][8], since
their Fisher matrix functions are singular. For most exam-
ples, only upper bounds of their generalization errors were
calculated but not the exact values. These models are called
non-regular.

There are usually considered to be direct and inverse
problems. The direct problem would be to solve the gen-
eralization error with a known true density function. The
inverse problem s to find proper learning models and learn-
ing algorithms to minimize the generalization error under
the condition of an unknown true density function. The in-
verse problem is important for practical usage, but in order
to tackle the inverse problem, first the direct problem has to
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be solved. So it is necessary and crucial to construct fun-
damental mathematical theories for solving the direct prob-
lem. Recently, it was proved that the maximum poles of the
zeta functions for hierarchical learning models asymptoti-
cally give their generalization errors as follows [1, 2]. Let
x be an input with a probability density functiaiiz) andy

an output. We assume thattraining samplez{xl}" , are
randomly selected from(x) and that{y,}_, are obtained

by the conditional probability density functl(qﬁy|x) Let
(™, y™) = {(zi,v:)}1=1. The aim of the learning sys-
tem is to estimate the functiof(y|x) by using(z",y").

Let us consider a learning modely|x, w) which infers a
probabilistic outpuy from a given inputz, wherew is a pa-
rameter. Fix ara priori probability density function)(w)

on the parameter sé¥’. Then, thea posterioriprobability
density functiorp(w|( "oy™))is wntten by

Hp Yilwi, w

w) ] (yl\x“ w)dw. So the av-
)) of the Bayesian density

p(w|(z",y") Z

where Z,, = fW P(
erage inference(y|z, (2™
function is given by

p(ylz, (2", y")) = [ p(ylz, w)p(w|(z",y"))dw.

Here we define a measure function between the true
density function(y|z) and the predictive density function
pyle, (2", y™)): o)

qa\y|x

K(qllp) /q(ylw) log P ERC0)
This function is always positive and satisfi&Sq||p) =
0 if and only if ¢(y|z) = p(y|z, (z™,y™)). The ex-
pectation value of that function over training samples is
called the generalization error. It clarifies how precisely
p(ylz, (™, y™)) can approximatg(y|xz). Assume that the
true probability density functiory(y|z) is expressed by
q(y|z) = p(y|z,w*), wherew* is constant. Let7(n) be
the generalization error :

p(y\x, w*)

= En{/p(y|w,w*)log Wq(x)dxdy},

whereE,, {-} is the expectation value over the setdfain-
ing samples. Define the zeta functidifz) of a complex
variablez for the learning model by

2 = [ Klw i)

q(z)dzdy.


debbie



whereK (w) is the Kullback function:

K(w) = /p(y|33,w*)log Mq(x)dxdy.

p(ylz, w)

Then, for the maximum pole-X of J(z) and its order,
we have

G(n) =2 A/n—(0—-1)/(nlogn)asn — co. (1)
Therefore, our aim is to obtaikhandd. The values\ andf
can be calculated by using a blowing up process.

In spite of those mathematical foundations, the main
terms of most generalization errors are unknown by the fol-
lowing reasons. By Hironaka’s Theorem [9], it is known
that the desingularization of an arbitrary polynomial can
be obtained by using a blowing up process. However the
desingularization of any polynomial in general, although
it is known as a finite process, is very difficult. Further-
more, most of the Kullback functions are degenerate (over
R) with respect to their Newton polyhedrons, singularities
of the Kullback functions are not isolated, and the Kull-
back functions are not simple polynomials, i.e., they have
parameters, for examplé/, H andN of

St S Yoo (i a3 )2,
whose learning model is one of three layered neural net-
works. Therefore, to obtain the desingularization of the
Kullback functions is a new problem even in mathematics,
since these singularities are very complicated and so most
of them have not been investigated so far.

In this paper, we consider the zeta functions

H M N H

Jv = JOoX Y ey

n=1k=1j=1 i=1

M H’ H N
H H dag; H H dbij; (2)
k=1i=1 i=1j=1

where M, N, H, H',p are natural numbers witlll’ <
H < 2H'" anday;, b;; for i > H’ are all constants. The
three layered neural network witN input units, H’ hid-
den units and\/ output units has the zeta functioh®
with p = 2, if it is trained for estimating the true distribu-
tion with H — H’ hidden units. Also a normal mixture
model has the zeta functiofiw with p = 1, M = 1,

Z-f:l ai; = 1 andZ;—I:H,_i_l aij = —1 [10]
In this paper, we consider the case #f = 2 and
arbitrary M, N by using a recursive blowing up process.
We already have andf if M = N = 1 and anyH,
H’in[11] and [12]. In the paper [13], we have clarifiad
andd of the reduced rank regression which is the three lay-
ered neural network with linear hidden units. This model is

the case of
M N H M H H N
/(Z DO anbip))? T] 1] daw: [T T dbis-
k=1j=1 i=1 k=1i=1 i1 j=1
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2 Resolution of singularities

In this section, we introduce Hironaka’s Theorem [9] on the
resolution of singularities and construction of blowing up.
Blowing up is a main tool in the resolution of singularities
of an algebraic variety.
Theorem[Hironaka [9]]

Let f be a real analytic function in a neighborhood of
w = (wy, - ,wq) € R with f(w) = 0. There exists an
open sef” > w, a real analytic manifold/ and a proper
analytic mapu from U to V such that
QDp:U—-E—V — f710)is an isomorphism, where
&= p 1 (f7H0)),

(2) for eachu € U, there are local analytic coordinates
(u1, - ,up) suchthatf (pu(u)) = Lu*us? - - - uir, where
s1,- -, 8, are non-negative integers.

Next we explain blowing up along a manifold used
in this paper. Define a manifold1 by gluing k£ open sets
U =2R%i=1,2,---,k(d > k) as follows.

Denote a coordinate &f; by (14, -+, €ai)-

Define an equivalence relation

(&1is&2iy -+ 5 &ai) ~ (&155 8255+ 5 &aj)
atg;; # 0and&; # 0, by &5 = 1/&54,&55 = &ii&ji, §nj =
§ni/§ji(L < h < k,h #0,5),&; = Eu(k +1 < £ < d),
and setM = [[_, Ui/ ~.

Also definer : M — R4 by

Ui o (&1ir- - 1 €ni);
= (&b Ciikimin Ciis Giiipris -

ot 1is

) gii&kh
) gdi)-

This map is well-defined and called blowing up along

X = {(wla"'awkawk}-‘rla”'7wd)€Rd|

wp = -+ =wg = 0}
The blowing map satisfies

(1) 7 : M — R%is proper and
)7 : M—7"1X) — R? — X is isomorphic.

3 Main Results

Define the norm of a matrbdC = (c¢;;) by ||C]| =
A/ Zi,j |Cij|2'

For simplicity, we use the notatioda instead of
Hf\; Hf:l dag; fora = (ai;).

ail ai2
az1 a22
Main Theorem 1 Let A = ] , B; =
apmi apm2
by b
b e | AndB = (Bi e By).
J 25
Set
U = ||AB||**dadb, (3)

then the maximum pole X of || ¥ and its orderd

[|AB||<1
are as follows.



(a)

) If N>M+1then\ =M andd = 1.

(i) If N = M then) = % andg = 1.
(i) If N =M — 1thenA = N andf = 2.

(iv)If N < M —1then\ = N andf = 1.

(b) The case ofix; + axs = 1.
(i) If N > M + pthen = 2N andg = 1.
(i) If N =M + pthen) = 2 andg = 2.
Sii) |f1 M—1<N < M+pthen\ = %am
(iv)If N =M — 1then\ = N andf = 2.
V) IfN <M —1thenA= N andf = 1.

a11 a12 aikg
. az  ax A
Main Theorem 2 Let A = . )
apMi  Gpm2  Gys
p+1 2p+1
Wb
Bj = bgj bg] b2p y B = (Bla T 7BN)
b* b* p+1 b %p-l‘l
35 U3 35

andags, by, for all k, j are constants. Supposg,b;; # 0
for somek andj.
Set

U = ||AB||**dadb, (4)

then the maximum pole \ of f|\AB||<1 ¥ and its orderd
are as follows.
Let Ny be the number of the s¢j | b3; # 0}
(a)
I > + 5= then)\ = === and@ = 1.
i) If N > M + 22! then) = 225N andg = 1
ii 1=1an =M+ 2= (or N = M + ) then
(i) If Ny =1andN = M + 2 (or N = M + &) th
M+N
A= 2N andd = 2.
(i) If Ny =1, M +1< N < M+ 2L andpis odd then
_ 3M+3N—-1+(p—1)(4M+2N—-1)/2 o
A= g’(pﬂ) andfd = 1.
((V)IfN; =1, M +1< N < M+ & andpis even then
)= 3AI+3N—1+(4]\§;—2N—1)(p/2—1) andf = 1.
% 1>2andM +1 < Nthen) = =252 andf = 1.
(V) If Ny > 2andM +1 < N then\ = 22N andg = 1

(Vi) If Ny > 2andM +1 = N then = 22N andp = 2.
(vii) If N = M then) = 3ME3N=1 andg = 1.

(viii) If N = M — 1 then\ = 2428 andg = 2.

(ix) If N < M —1then) = 4428 andg = 1.

(b) The case o1 + are = 1 andaj; = —1.
() If N > M + 2£! then) = 2N andg = 1.
(i) If Ny =1andN = M + 2EL (or N = M + &) then
A =MEN andg = 2.
(i) If Ny =1,M +1< N < M + 2+ andpis odd then
\ = M+3N—1+(1;(—p1J)r(12)M+2N—1)/2 andd = 1.
(iV)If Ny =1, M +1< N < M+ §andpis even then
\ = M+3N—1+(2J\/12;—2N—1)(p/2—1) andd = 1.
(V) If Ny >2andM +1 < N then\ = 23X andg = 1.
(vi) If Ny > 2andM +1 = N then) = 23N andp = 2.
(vii) If N = M then\ = 2381 gndp = 1.
(vii) If N =M — 1then\ = N andf = 2.
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(ix)If N < M —1then\ = N andf§ = 1.

Here we show two examples which have the zeta
function [ ¥ in (2).
Example 1

Consider the three layered neural network withn-
put units, H' hidden units and\/ output units which is
trained for estimating the true distribution with— H’ hid-
den units. Denote an input value by= (z;) € RY with a
probability density functiom(x) which has a compact sup-
port . Then an output valug = (yx) € RM of the three
layered neural network is given gy = fi(x, w)+(noise)
wherew = {ag;,b;5;1 <k < M,1 <i<H,1<j<
N}and

g3

H' N
fr(z,w) = Z Ak tanh(z bijxj).
i=1 j=1
Consider a statistical model
1 1 )
p(ylz,w) = W exp(—§||y — fl@,w)[[).

Assume that the true distribution

1
ke w) = g (=gl = Flaw)l )

is included in the learning model, where* =
{ag bip1<k<MH +1<i<H1<j<N}and
fi(@,w*) = ZiH:H’-ﬁ-l(_alti)tanh(Zj‘V:l bj;x;). Sup-
pose that am priori probability density function)(w) is a
C*° — function with a compact suppo’ wherey (w*) >

0. Then it has the zeta functioh¥ in (2) with p = 2.

This is proved by using a Taylor expansion together

with Lemma 5 in [1].

Example 2
We consider the normal mixture model
H' 2
1 Zj:1($j — bij)
plel) = (i D e ep(= ==y ),
wherew = {a;,b;5;1 < i < H',1 < j < N} and
S ay; = 1. Setthe true distribution by
H N * \2
X 1 N > j—1(@; —bj;)
p(z|w*) = W . Z (—ai;) exp(— 9 )
1=H’'+1

wherew* = {aii,b’;j;H’ +1<i<H1<j<N}and
ZfiH/H a;j; = —1. Suppose that aa priori probability
density functiony(w) is aC>— function with a compact
supportiV wherey(w*) > 0. Then it has the zeta function

[ Win (2) withp = 1 andM = 1[10].

4  Proof of Main Theorem 1

We need the following inductive statemen) of & for cal-
culating poles by using a blowing up process.



() " ={off(d] + o+ dip)
2 z
a12

22
(Bi, -+, By)

2k
+viy
an2

vfffo(k*l)(MJerl)dddvdadb,
whereB; = v} 7", andB; = b, j > 2.

Construct blowing up off in (3) along the submani-
fold {b;; =0,i=1,2,1 < j < N}.

Letby; = v11 andb,»j = 'Ullbij for (7,,]) 75 (1, 1).

Then we have

2z
a1 ai2
a21 a22
U= (By,---,Byn)| v "'dvdadb,
api1  amp2
p+1
V11 U1y
where By = and B; =
p+1;p+1 J
vi1bor Vi b
p+1;p+1
vibyy vy by i>2
p+lzp+l |»J = <
viibg;  vyy by

By Lemmas 2 and 3 in [13], the maximum pole of
Jw ¥ and its order are equal to those fof, ¥’, where

2z
ai; a2
a1 Q22
U = (By,---,Bn)|| v?Y~'dvdadb,
apM1  am?2
V11 0
B = 1 1 and
! virbg WP 1
b21 b21
0 0
1
B = oy 1 b | e IR ,
ba1 by 1 bg;rl bg;l
Jj=>2.
We change the variablesd;y,...,dy; from
aii,---,ap by setting
di a1 a12
day a1 a22 1
: N : bar )
dan ani  anre

The case ofa;; +ajx = 1. If a;1 + a0 = 1,
thend“ = aﬂ(l — b21) + boy. If bop = 1, then
d;1 = 1, so blowing up is completed.

We obtain

U = {v} (dF) + -+ dip)
a12 2

o7 o (By,---,By)|| Fo?YN~'dddvdadb,
ap2
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where

1 1
By =y and
1 11 b21 bgi‘rl
L by 1wt .
Bi = oo S| =2
’ ( ’ ba1  baj ! vt bg;rl J=z
11 L by
Let by, = andb.. — §
. ‘ bar U5 2 ‘ ba1  baj
Then
B = ((bh (D + barbiy)PHh — (barbay)PHY) ),

Jj>2.
Again by Lemmas 2 and 3 in [13], we set

" = {of,(d3, + -+ d3y)
ai2
a2

o7 (B, , By)| 12202 "'dddvdadb,

apnr2

whereB; = v}, by andB; = b, j > 2.
We have the inductive statemeprd) of k = 1.
Construct blowing up off* along the submanifold
{’011 :bl22 = :b/2N =di1 = =dp :0} Then
we have (1), (I1), (Ill) cases.
(|) Let dy; = wy1, v11 = U11v11, bl2j = U11b/2j forj > 2
anddﬂ = Ulldil for ¢ >2 in U*,
Then, we have

M g2k 2k+2 2 2 o 2k+2
U™ = {vpiuyy (1 +dyy + -+ diy) + v uny
2
a2

a22 .
(Bl7"'7BN) }

apnr2
s pP N AR MAEN =), AN =R MEN L) 4 gy dudadb

whereB; = v}y T Ul by, andB; = bh;, 5 > 2.
ON + (k—1)(M+ N —1)

2k

We have poles— and

ON + k(M + N — 1)
2k + 2
(”) Let b’22 = V929, U11 = U22V11, blzj = ’U22b/2j forj > 3
andd;; = voad;; fori > 11in U*,
Then, we have

U = {offuss T2 (dT + -+ di)

2
a2
2k, 2k+2 a22 B B z
V17 V3 ( I N) }
ap2

vfiv_1+(k_1)(M+N_1)vgév_Hk(MJrN_l)dddvdadb,

whereB; = v} b by, By = Tand By = b, j >
3.

Again by using Lemmas 2 and 3 in [13], the max-
imum pole of [;;, ¥"* and its order are equal to those of

)



S 9, where

"x 2k, 2k+2/ 32 2
U = {vitvay (diy + -+ diy)
2
a2
@22
2%k 2k+2 2
V17 Vg }
apn2

Uﬁ\/—lﬂk—l)(M+N—1)U%v—1+k(M+N—1)dddUdadb

The case ofa;; +ajo = 1. If a;1 +a4,2 = 1, then
aiz = (1 —v2¥"2025d;1) /(1 — byy). Therefore,
it completes blowing up.

Construct blowing up oft””* along the submanifold
{a12 =" =am2 =di1 = =dp1 =0}

Letdi1 = w11, dj1 = uiids fori > 2 anda;, =
uiaq fori > 1in 0*,

Then
M __ 2k, 2k+2, 2 2 2
U = {7 vy Cuiy (1 +day + -+ djy)
2
ai2
az2
2%k 2k+2 2
+otivas P ud }
apnr2

IV DMEN =D, VAR MAN =1, 2M =1 14y dvdadb

IN + (k—1)(M + N —1)

We have oles — )
P 2k

2N + k(M + N —1)
— and—M.
2k + 2
(1) Let b’2j = vub’gj for 7 > 2andd;; = vi1d;; fori > 1
in U*,
Then, we have

W = R e )
2
a2
2k‘+2 22 B B z
+U ( IR N) }
ap2

2N RN =D 4 g dydadb,

whereB; = v, "t} andB; = bhjeJ > 2.
Therefore we have the inductive statementof k& +

- We finish induction at = p + 1 and we have
Vo1 = = {4+ dR )
ai2 ?
2Pt a.22 (Bi,--- ,Bx)|| ¥
apr2

2N PN 444 pdadb,

whereB; = by, andB; = by, j > 2.
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Construct blowing up o7, ; along the submanifold
{b21 = ... = ng = d11 = ... = dMl = 0} Then we
need (I'), (II') cases.
(l') Let b21 = V21, bé] = ’Uglblzj forj >2 anddﬂ = ’Ugldﬂ
fori > 1in ¥*

p+1-
Then, we have

2p+1) 2 2 2
‘I’;*-s-l = {oy; @ )v21(d11+ o+ dy)
2
a12
a2
"‘Ul{pﬂ)vm }
anr2

N THPQEEN =L MAN =14 44 pd adb.

The case ofaj; + aj2 = 1. Sincea;s = (1 —
0?02, d;1) /(1 — bay), blowing up is finished.

Construct blowing up of;*, ; along the submanifold

{a12 = =apy2=dy1 = =dpy1 =0}.
Letdy; = ui1, dj1 = uwiidi for ¢ > 2 andaig =
uy1ase fori > 11in \Ij;)*—i-l
Then, we have
" o 2(p+1) 2
i = A{un v ui (L+d3) + - +dipy)
2
aiz
a2z
2(p+1) 2 2
oy g0, }
am?2

2N—-1 M+N-1 _ _
2N TP (MAN =L MAN =1, 2M =1 4 4y dyd adb.

M+N
T2

2N +p(M + N —1)
2(p+1)

We have poles-

and—M.
(”’) Let di1 = wiq, béj = unb'Q
U11di1 for ¢ > 2 in \I/;+1.

Then we have

; forj > 1anddy =

Uy o= G A+ d3 e+ dip)
2
ai2
a22
_’_v1§p+l)u11 : (Blv"' ﬂBN) }Z
apr2
2N THPMAEN L) MAN =144y dvdadb,
whereB; = by, andB; = by, j > 2.
2N M+ N-1
We have poles — +p(M + ) and
2(p+1)
_M+N
5
From all the inductions, we have poles
2N + (k-1 —
2N+ ( M+ N-1) fork = 1.o-pt 1.
Mo N 2k
At andM.




IfN2M—1then2N+(k_1)(M+N_1) >

2k -
2N+ k(M + N -1)
2(k+1)
2N+p(M+N—-1)
IfN—I)%thheng(prZM.
Therefore

@)If N> M +1then\ = M andf = 1.
(i) If N = M then) = % andd = 1.
(i) If N =M —1then) = N andf = 2.

(V) If N < M —1then\ = N andf = 1.
The case ofa;; + ajo = 1. M does not appear.

As space is limited, the proof of Main Theorem 2
is omitted here. We also use a blowing up process, but
need more complicated method, since we have the constant
terms such as3;.

5 Conclusion

In this paper, we consider the asymptotic form of the gener-
alization error in Bayesian estimation for the three layered
learning models.

Let p(ylz,w) = Grymrm exp(—3lly — flz,0)|),
where fi(z,w) = Zle Qi tanh(Zé\’:l bjjz;) for 1 <
k < M. This model is the three layered neural network
with NV input units,2 hidden units and\/ output units. If
the true distribution is zero, the generalization er@G(s)
in (1) is given by Main Theorem 1 (a) with = 2. Ifitis
trained for estimating the true distribution represented by
the model withl hidden units,G(n) is obtained by Main
Theorem 2 (a).

The normal mixture model

N B \2
plal) = 2 Tyl

= W Z?:l a4 eXp(_ s W|th
ai1 + a1z = 1 has the generalization err6f(n) given by
Main Theorem 2 (b) withp = 1 and M = 1, if a true

N Ti—b* 2
distribution isp(z|w*) = WGXP(_M)-

If p = 1and M = 1, Main Theorem 1 (b) corre-
sponds to the case of the true distributipf|w*) =

N 2
(%)ﬁm exp(—=3510). It is easily checked that Main
Theorem 1 (b) and Main Theorem 2 (b) are the same re-
sults if p = 1, since their difference is onlgp;) # 0 or
(b7) =0.

The applications of our result are as follows. From
these results, we can construct mathematical foundation
for analyzing and developing the precision of the MCMC
method [14], [15]. Also we would compare these values to
such as the generalization error of localized Bayes estima-
tion [16].

We could see that the blowing up method in algebraic
geometry can be effectively used for solving the problems
in the learning theory. Our future purpose is to improve our
method for applying arbitrarfd and H’.
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