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ABSTRACT
In this paper, we obtain the asymptotic forms of the gen-
eralization errors for some three layered learning models
in Bayesian estimation. The generalization error measures
how precisely learning models can approximate true den-
sity functions which produce learning data. We use a recur-
sive blowing up process for analyzing the Kullback func-
tion of the learning model. Then, we have the maximum
pole of its zeta function which is defined by the integral of
the Kullback function and ana priori probability density
function. In [1, 2], it was proved that the maximum pole
of the zeta function asymptotically gives the generalization
error of the hierarchical learning model.

KEY WORDS
Generalization error, non-regular learning machines,
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1 Introduction

Hierarchical learning models are such as a layered neural
network, reduced rank regression, a normal mixture model
and a Boltzmann machine. These are known as effec-
tive learning models for analyzing complicated data prac-
tically. Therefore the generalization errors (learning effi-
ciency) of these models may be smaller than those of reg-
ular statistical models. However, their generalization er-
rors cannot be analyzed by using classic theories of regular
statistical models, for example, model selection methods
AIC[3], TIC[4], HQ[5], NIC[6], BIC[7], MDL[8], since
their Fisher matrix functions are singular. For most exam-
ples, only upper bounds of their generalization errors were
calculated but not the exact values. These models are called
non-regular.

There are usually considered to be direct and inverse
problems. The direct problem would be to solve the gen-
eralization error with a known true density function. The
inverse problem is to find proper learning models and learn-
ing algorithms to minimize the generalization error under
the condition of an unknown true density function. The in-
verse problem is important for practical usage, but in order
to tackle the inverse problem, first the direct problem has to

be solved. So it is necessary and crucial to construct fun-
damental mathematical theories for solving the direct prob-
lem. Recently, it was proved that the maximum poles of the
zeta functions for hierarchical learning models asymptoti-
cally give their generalization errors as follows [1, 2]. Let
x be an input with a probability density functionq(x) andy
an output. We assume thatn training samples{xi}n

i=1 are
randomly selected fromq(x) and that{yi}n

i=1 are obtained
by the conditional probability density functionq(y|x). Let
(xn, yn) := {(xi, yi)}n

i=1. The aim of the learning sys-
tem is to estimate the functionq(y|x) by using(xn, yn).
Let us consider a learning modelp(y|x,w) which infers a
probabilistic outputy from a given inputx, wherew is a pa-
rameter. Fix ana priori probability density functionψ(w)
on the parameter setW . Then, thea posterioriprobability
density functionp(w|(xn, yn)) is written by

p(w|(xn, yn)) =
1

Zn
ψ(w)

n∏

i=1

p(yi|xi, w),

where Zn =
∫

W
ψ(w)

∏n
i=1 p(yi|xi, w)dw. So the av-

erage inferencep(y|x, (xn, yn)) of the Bayesian density
function is given by

p(y|x, (xn, yn)) =
∫

p(y|x,w)p(w|(xn, yn))dw.

Here we define a measure function between the true
density functionq(y|x) and the predictive density function
p(y|x, (xn, yn)):

K(q||p) =
∫

q(y|x) log
q(y|x)

p(y|x, (xn, yn))
q(x)dxdy.

This function is always positive and satisfiesK(q||p) =
0 if and only if q(y|x) = p(y|x, (xn, yn)). The ex-
pectation value of that function over training samples is
called the generalization error. It clarifies how precisely
p(y|x, (xn, yn)) can approximateq(y|x). Assume that the
true probability density functionq(y|x) is expressed by
q(y|x) = p(y|x,w∗), wherew∗ is constant. LetG(n) be
the generalization error :

G(n) = En{
∫

p(y|x,w∗) log
p(y|x,w∗)

p(y|x, (xn, yn))
q(x)dxdy},

whereEn{·} is the expectation value over the set ofn train-
ing samples. Define the zeta functionJ(z) of a complex
variablez for the learning model by

J(z) =
∫

K(w)zψ(w)dw,
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whereK(w) is the Kullback function:

K(w) =
∫

p(y|x,w∗) log
p(y|x,w∗)
p(y|x,w)

q(x)dxdy.

Then, for the maximum pole−λ of J(z) and its orderθ,
we have

G(n) ∼= λ/n− (θ − 1)/(n log n) asn →∞. (1)

Therefore, our aim is to obtainλ andθ. The valuesλ andθ
can be calculated by using a blowing up process.

In spite of those mathematical foundations, the main
terms of most generalization errors are unknown by the fol-
lowing reasons. By Hironaka’s Theorem [9], it is known
that the desingularization of an arbitrary polynomial can
be obtained by using a blowing up process. However the
desingularization of any polynomial in general, although
it is known as a finite process, is very difficult. Further-
more, most of the Kullback functions are degenerate (over
R) with respect to their Newton polyhedrons, singularities
of the Kullback functions are not isolated, and the Kull-
back functions are not simple polynomials, i.e., they have
parameters, for example,M , H andN of∑H

n=1

∑M
k=1

∑N
j=1(

∑H
i=1 akib

2n−1
ij )2,

whose learning model is one of three layered neural net-
works. Therefore, to obtain the desingularization of the
Kullback functions is a new problem even in mathematics,
since these singularities are very complicated and so most
of them have not been investigated so far.

In this paper, we consider the zeta functions

∫
Ψ =

∫
(

H∑
n=1

M∑

k=1

N∑

j=1

(
H∑

i=1

akib
p(n−1)+1
ij )2)z

M∏

k=1

H′∏

i=1

daki

H′∏

i=1

N∏

j=1

dbij , (2)

where M, N, H,H ′, p are natural numbers withH ′ ≤
H ≤ 2H ′ andaki, bij for i > H ′ are all constants. The
three layered neural network withN input units,H ′ hid-
den units andM output units has the zeta function

∫
Ψ

with p = 2, if it is trained for estimating the true distribu-
tion with H − H ′ hidden units. Also a normal mixture
model has the zeta function

∫
Ψ with p = 1, M = 1,∑H′

j=1 a1j = 1 and
∑H

j=H′+1 a1j = −1 [10].
In this paper, we consider the case ofH ′ = 2 and

arbitraryM , N by using a recursive blowing up process.
We already haveλ andθ if M = N = 1 and anyH,

H ′ in [11] and [12]. In the paper [13], we have clarifiedλ
andθ of the reduced rank regression which is the three lay-
ered neural network with linear hidden units. This model is
the case of∫

(
M∑

k=1

N∑

j=1

(
H∑

i=1

akibij)2)z
M∏

k=1

H′∏

i=1

daki

H′∏

i=1

N∏

j=1

dbij .

2 Resolution of singularities

In this section, we introduce Hironaka’s Theorem [9] on the
resolution of singularities and construction of blowing up.
Blowing up is a main tool in the resolution of singularities
of an algebraic variety.
Theorem[Hironaka [9]]

Letf be a real analytic function in a neighborhood of
w = (w1, · · · , wd) ∈ Rd with f(w) = 0. There exists an
open setV 3 w, a real analytic manifoldU and a proper
analytic mapµ fromU to V such that
(1) µ : U − E → V − f−1(0) is an isomorphism, where
E = µ−1(f−1(0)),
(2) for eachu ∈ U , there are local analytic coordinates
(u1, · · · , un) such thatf(µ(u)) = ±us1

1 us2
2 · · ·usn

n , where
s1, · · · , sn are non-negative integers.

Next we explain blowing up along a manifold used
in this paper. Define a manifoldM by gluingk open sets
Ui
∼= Rd, i = 1, 2, · · · , k(d ≥ k) as follows.

Denote a coordinate ofUi by (ξ1i, · · · , ξdi).
Define an equivalence relation
(ξ1i, ξ2i, · · · , ξdi) ∼ (ξ1j , ξ2j , · · · , ξdj)

at ξji 6= 0 andξij 6= 0, by ξij = 1/ξji, ξjj = ξiiξji, ξhj =
ξhi/ξji(1 ≤ h ≤ k, h 6= i, j), ξ`j = ξ`i(k + 1 ≤ ` ≤ d),
and setM =

∐k
i=1 Ui/ ∼.

Also defineπ : M→ Rd by

Ui 3 (ξ1i, · · · , ξni);
7→ (ξiiξ1i, · · · , ξiiξi−1i, ξii, ξiiξi+1i, · · · , ξiiξki,

ξk+1i, · · · , ξdi).

This map is well-defined and called blowing up along

X = {(w1, · · · , wk, wk+1, · · · , wd) ∈ Rd |
w1 = · · · = wk = 0}.

The blowing map satisfies
(1) π : M→ Rd is proper and
(2) π : M− π−1(X) → Rd −X is isomorphic.

3 Main Results

Define the norm of a matrixC = (cij) by ||C|| =√∑
i,j |cij |2.

For simplicity, we use the notationda instead of∏M
i=1

∏H
j=1 daij for a = (aij).

Main Theorem 1 Let A =




a11 a12

a21 a22

...
aM1 aM2


, Bj =

(
b1j bp+1

1j

b2j bp+1
2j

)
andB = (B1, · · · , BN ).

Set
Ψ = ||AB||2zdadb, (3)

then the maximum pole−λ of
∫
||AB||<1

Ψ and its orderθ
are as follows.
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(a)
(i) If N ≥ M + 1 thenλ = M andθ = 1.
(ii) If N = M thenλ = 2N+p(M+N−1)

2(p+1) andθ = 1.
(iii) If N = M − 1 thenλ = N andθ = 2.
(iv) If N < M − 1 thenλ = N andθ = 1.

(b) The case ofak1 + ak2 = 1.
(i) If N > M + p thenλ = M+N

2 andθ = 1.
(ii) If N = M + p thenλ = M+N

2 andθ = 2.

(iii) If M − 1 < N < M + p thenλ = 2N+p(M+N−1)
2(p+1) and

θ = 1.
(iv) If N = M − 1 thenλ = N andθ = 2.
(v) If N < M − 1 thenλ = N andθ = 1.

Main Theorem 2 Let A =




a11 a12 a∗13
a21 a22 a∗23

...
aM1 aM2 a∗M3


,

Bj =




b1j bp+1
1j b2p+1

1j

b2j bp+1
2j b2p+1

2j

b∗3j b∗3j
p+1 b∗3j

2p+1


, B = (B1, · · · , BN )

anda∗k3, b∗3j for all k, j are constants. Supposea∗k3b
∗
3j 6= 0

for somek andj.
Set

Ψ = ||AB||2zdadb, (4)

then the maximum pole−λ of
∫
||AB||<1

Ψ and its orderθ
are as follows.

LetN1 be the number of the set{j | b∗3j 6= 0}.
(a)

(i) If N > M + p+1
2 thenλ = 2M+N

2 andθ = 1.
(ii) If N1 = 1 andN = M + p+1

2 (or N = M + p
2 ) then

λ = 2M+N
2 andθ = 2.

(iii) If N1 = 1, M + 1 ≤ N < M + p+1
2 andp is odd then

λ = 3M+3N−1+(p−1)(4M+2N−1)/2
2(p+1) andθ = 1.

(iv) If N1 = 1, M + 1 ≤ N < M + p
2 andp is even then

λ = 3M+3N−1+(4M+2N−1)(p/2−1)
2p andθ = 1.

(v) If N1 ≥ 2 andM +1 < N thenλ = 2M+N
2 andθ = 1.

(vi) If N1 ≥ 2 andM +1 = N thenλ = 2M+N
2 andθ = 2.

(vii) If N = M thenλ = 3M+3N−1
4 andθ = 1.

(viii) If N = M − 1 thenλ = M+2N
2 andθ = 2.

(ix) If N < M − 1 thenλ = M+2N
2 andθ = 1.

(b) The case ofak1 + ak2 = 1 anda∗k3 = −1.
(i) If N > M + p+1

2 thenλ = M+N
2 andθ = 1.

(ii) If N1 = 1 andN = M + p+1
2 (or N = M + p

2 ) then
λ = M+N

2 andθ = 2.
(iii) If N1 = 1, M + 1 ≤ N < M + p+1

2 andp is odd then

λ = M+3N−1+(p−1)(2M+2N−1)/2
2(p+1) andθ = 1.

(iv) If N1 = 1, M + 1 ≤ N < M + p
2 andp is even then

λ = M+3N−1+(2M+2N−1)(p/2−1)
2p andθ = 1.

(v) If N1 ≥ 2 andM + 1 < N thenλ = M+N
2 andθ = 1.

(vi) If N1 ≥ 2 andM +1 = N thenλ = M+N
2 andθ = 2.

(vii) If N = M thenλ = M+3N−1
4 andθ = 1.

(viii) If N = M − 1 thenλ = N andθ = 2.

(ix) If N < M − 1 thenλ = N andθ = 1.

Here we show two examples which have the zeta
function

∫
Ψ in (2).

Example 1
Consider the three layered neural network withN in-

put units,H ′ hidden units andM output units which is
trained for estimating the true distribution withH−H ′ hid-
den units. Denote an input value byx = (xj) ∈ RN with a
probability density functionq(x) which has a compact sup-
portW̃ . Then an output valuey = (yk) ∈ RM of the three
layered neural network is given byyk = fk(x, w)+(noise),
wherew = {aki, bij ; 1 ≤ k ≤ M, 1 ≤ i ≤ H ′, 1 ≤ j ≤
N} and

fk(x, w) =
H′∑

i=1

aki tanh(
N∑

j=1

bijxj).

Consider a statistical model

p(y|x,w) =
1

(2π)M/2
exp(−1

2
||y − f(x,w)||2).

Assume that the true distribution

p(y|x,w∗) =
1

(2π)M/2
exp(−1

2
||y − f(x,w∗)||2),

is included in the learning model, wherew∗ =
{a∗ki, b

∗
ij ; 1 ≤ k ≤ M, H ′ + 1 ≤ i ≤ H, 1 ≤ j ≤ N} and

fk(x,w∗) =
∑H

i=H′+1(−a∗ki) tanh(
∑N

j=1 b∗ijxj). Sup-
pose that ana priori probability density functionψ(w) is a
C∞− function with a compact supportW whereψ(w∗) >
0. Then it has the zeta function

∫
Ψ in (2) with p = 2.

This is proved by using a Taylor expansion together
with Lemma 5 in [1].
Example 2

We consider the normal mixture model

p(x|w) =
1

(2π)N/2

H′∑

i=1

a1i exp(−
∑N

j=1(xj − bij)2

2
),

wherew = {a1i, bij ; 1 ≤ i ≤ H ′, 1 ≤ j ≤ N} and∑H′

i=1 a1i = 1. Set the true distribution by

p(x|w∗) =
1

(2π)N/2

H∑

i=H′+1

(−a∗1i) exp(−
∑N

j=1(xj − b∗ij)
2

2
),

wherew∗ = {a∗1i, b
∗
ij ; H

′ + 1 ≤ i ≤ H, 1 ≤ j ≤ N} and∑H
i=H′+1 a∗1i = −1. Suppose that ana priori probability

density functionψ(w) is aC∞− function with a compact
supportW whereψ(w∗) > 0. Then it has the zeta function∫

Ψ in (2) with p = 1 andM = 1 [10].

4 Proof of Main Theorem 1

We need the following inductive statement(∗) of k for cal-
culating poles by using a blowing up process.
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(∗) Ψ∗ = {v2k
11 (d2

11 + · · ·+ d2
M1)

+v2k
11

∥∥∥∥∥∥∥∥∥




a12

a22

...
aM2


(B1, · · · , BN )

∥∥∥∥∥∥∥∥∥

2


z

v
2N−1+(k−1)(M+N−1)
11 dddvdadb,

whereB1 = vp+1−k
11 b′21 andBj = b′2j , j ≥ 2.

Construct blowing up ofΨ in (3) along the submani-
fold {bij = 0, i = 1, 2, 1 ≤ j ≤ N}.

Let b11 = v11 andbij = v11bij for (i, j) 6= (1, 1).
Then we have

Ψ =

∥∥∥∥∥∥∥∥∥




a11 a12

a21 a22

...
aM1 aM2


(B1, · · · , BN )

∥∥∥∥∥∥∥∥∥

2z

v2N−1
11 dvdadb,

where B1 =
(

v11 vp+1
11

v11b21 vp+1
11 bp+1

21

)
and Bj =

(
v11b1j vp+1

11 bp+1
1j

v11b2j vp+1
11 bp+1

2j

)
, j ≥ 2.

By Lemmas 2 and 3 in [13], the maximum pole of∫
W

Ψ and its order are equal to those of
∫

W
Ψ′, where

Ψ′ =

∥∥∥∥∥∥∥∥∥




a11 a12

a21 a22

...
aM1 aM2


(B1, · · · , BN )

∥∥∥∥∥∥∥∥∥

2z

v2N−1
11 dvdadb,

B1 =




v11 0

v11b21 vp+1
11

∣∣∣∣
1 1

b21 bp+1
21

∣∣∣∣


 and

Bj =




0 0

v11

∣∣∣∣
1 b1j

b21 b2j

∣∣∣∣ vp+1
11

∣∣∣∣∣
1 bp+1

1j

bp+1
21 bp+1

2j

∣∣∣∣∣


,

j ≥ 2.
We change the variablesd11, . . . , dM1 from

a11, . . . , aM1 by setting



d11

d21

...
dM1


 =




a11 a12

a21 a22

...
aM1 aM2




(
1

b21

)
.

The case ofai1 + ai2 = 1. If ai1 + ai2 = 1,
thendi1 = ai1(1 − b21) + b21. If b21 = 1, then
di1 = 1, so blowing up is completed.

We obtain

Ψ′ = {v2
11(d

2
11 + · · ·+ d2

M1)

+v2
11

∥∥∥∥∥∥∥∥∥




a12

a22

...
aM2


(B1, · · · , BN )

∥∥∥∥∥∥∥∥∥

2

}zv2N−1
11 dddvdadb,

where

B1 = vp
11

∣∣∣∣
1 1

b21 bp+1
21

∣∣∣∣ and

Bj =

( ∣∣∣∣
1 b1j

b21 b2j

∣∣∣∣ vp
11

∣∣∣∣∣
1 bp+1

1j

bp+1
21 bp+1

2j

∣∣∣∣∣

)
, j ≥ 2.

Let b′21 =
∣∣∣∣

1 1
b21 bp+1

21

∣∣∣∣ and b′2j =
∣∣∣∣

1 b1j

b21 b2j

∣∣∣∣.
Then
Bj =

(
b′2j vp

11((b
′
2j + b21b1j)p+1 − (b21b1j)p+1)

)
,

j ≥ 2.
Again by Lemmas 2 and 3 in [13], we set

Ψ′′ = {v2
11(d

2
11 + · · ·+ d2

M1)

+v2
11

∥∥∥∥∥∥∥∥∥




a12

a22

...
aM2


(B1, · · · , BN )

∥∥∥∥∥∥∥∥∥
}2zv2N−1

11 dddvdadb,

whereB1 = vp
11b

′
21 andBj = b′2j , j ≥ 2.

We have the inductive statement(∗) of k = 1.
Construct blowing up ofΨ∗ along the submanifold

{v11 = b′22 = · · · = b′2N = d11 = · · · = dM1 = 0}. Then
we have (I), (II), (III) cases.
(I) Let d11 = u11, v11 = u11v11, b′2j = u11b

′
2j for j ≥ 2

anddi1 = u11di1 for i ≥ 2 in Ψ∗.
Then, we have

Ψ′∗ = {v2k
11u2k+2

11 (1 + d2
21 + · · ·+ d2

M1) + v2k
11u2k+2

11∥∥∥∥∥∥∥∥∥




a12

a22

...
aM2


(B1, · · · , BN )

∥∥∥∥∥∥∥∥∥

2

}z

×v
2N−1+(k−1)(M+N−1)
11 u

2N−1+k(M+N−1)
11 dddudvdadb,

whereB1 = vp+1−k
11 up−k

11 b′21 andBj = b′2j , j ≥ 2.

We have poles−2N + (k − 1)(M + N − 1)
2k

and

−2N + k(M + N − 1)
2k + 2

.

(II) Let b′22 = v22, v11 = v22v11, b′2j = v22b
′
2j for j ≥ 3

anddi1 = v22di1 for i ≥ 1 in Ψ∗.
Then, we have

Ψ′∗ = {v2k
11v2k+2

22 (d2
11 + · · ·+ d2

M1)

+v2k
11v2k+2

22

∥∥∥∥∥∥∥∥∥




a12

a22

...
aM2


(B1, · · · , BN )

∥∥∥∥∥∥∥∥∥

2

}z

v
2N−1+(k−1)(M+N−1)
11 v

2N−1+k(M+N−1)
22 dddvdadb,

whereB1 = vp+1−k
11 vp−k

22 b′21, B2 = 1 andBj = b′2j , j ≥
3.

Again by using Lemmas 2 and 3 in [13], the max-
imum pole of

∫
W

Ψ′∗ and its order are equal to those of
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∫
W

Ψ′′∗, where

Ψ′′∗ = {v2k
11v2k+2

22 (d2
11 + · · ·+ d2

M1)

+v2k
11v2k+2

22

∥∥∥∥∥∥∥∥∥




a12

a22

...
aM2




∥∥∥∥∥∥∥∥∥

2

}z

v
2N−1+(k−1)(M+N−1)
11 v

2N−1+k(M+N−1)
22 dddvdadb.

The case ofai1 +ai2 = 1. If ai1 +ai2 = 1, then
ai2 = (1 − v2k−2

11 v2k
22di1)/(1 − b21). Therefore,

it completes blowing up.

Construct blowing up ofΨ′′∗ along the submanifold
{a12 = · · · = aM2 = d11 = · · · = dM1 = 0}.

Let d11 = u11, di1 = u11di1 for i ≥ 2 andai2 =
u11ai2 for i ≥ 1 in Ψ′′∗.

Then

Ψ′′′∗ = {v2k
11v2k+2

22 u2
11(1 + d2

21 + · · ·+ d2
M1)

+v2k
11v2k+2

22 u2
11

∥∥∥∥∥∥∥∥∥




a12

a22

...
aM2




∥∥∥∥∥∥∥∥∥

2

}z

v
2N−1+(k−1)(M+N−1)
11 v

2N−1+k(M+N−1)
22 u2M−1

11 dddudvdadb.

We have poles −2N + (k − 1)(M + N − 1)
2k

,

−2N + k(M + N − 1)
2k + 2

and−M .

(III) Let b′2j = v11b
′
2j for j ≥ 2 anddi1 = v11di1 for i ≥ 1

in Ψ∗.
Then, we have

Ψ′∗ = {v2k+2
11 (d2

11 + · · ·+ d2
M1)

+v2k+2
11

∥∥∥∥∥∥∥∥∥




a12

a22

...
aM2


(B1, · · · , BN )

∥∥∥∥∥∥∥∥∥

2

}z

v
2N−1+k(M+N−1)
11 dddvdadb,

whereB1 = vp−k
11 b′21 andBj = b′2j , j ≥ 2.

Therefore we have the inductive statement(∗) of k +
1.

We finish induction atk = p + 1 and we have

Ψ∗p+1 = {v2(p+1)
11 (d2

11 + · · ·+ d2
M1)

+v
2(p+1)
11

∥∥∥∥∥∥∥∥∥




a12

a22

...
aM2


(B1, · · · , BN )

∥∥∥∥∥∥∥∥∥

2

}z

v
2N−1+p(M+N−1)
11 dddvdadb,

whereB1 = b′21 andBj = b′2j , j ≥ 2.

Construct blowing up ofΨ∗p+1 along the submanifold
{b21 = · · · = b2N = d11 = · · · = dM1 = 0}. Then we
need (I’), (II’) cases.
(I’) Let b′21 = v21, b′2j = v21b

′
2j for j ≥ 2 anddi1 = v21di1

for i ≥ 1 in Ψ∗p+1.
Then, we have

Ψ′∗p+1 = {v2(p+1)
11 v2

21(d
2
11 + · · ·+ d2

M1)

+v
2(p+1)
11 v2

21

∥∥∥∥∥∥∥∥∥




a12

a22

...
aM2




∥∥∥∥∥∥∥∥∥

2

}z

v
2N−1+p(M+N−1)
11 vM+N−1

21 dddvdadb.

The case ofai1 + ai2 = 1. Sinceai2 = (1 −
v2p
11v2

21di1)/(1− b21), blowing up is finished.

Construct blowing up ofΨ′∗p+1 along the submanifold
{a12 = · · · = aM2 = d11 = · · · = dM1 = 0}.

Let d11 = u11, di1 = u11di1 for i ≥ 2 andai2 =
u11ai2 for i ≥ 1 in Ψ′∗p+1.

Then, we have

Ψ′′∗p+1 = {v2(p+1)
11 v2

21u
2
11(1 + d2

21 + · · ·+ d2
M1)

+v
2(p+1)
11 v2

21u
2
11

∥∥∥∥∥∥∥∥∥




a12

a22

...
aM2




∥∥∥∥∥∥∥∥∥

2

}z

v
2N−1+p(M+N−1)
11 vM+N−1

21 u2M−1
11 dddudvdadb.

We have poles−2N + p(M + N − 1)
2(p + 1)

, −M + N

2
and−M .
(II’) Let d11 = u11, b′2j = u11b

′
2j for j ≥ 1 anddi1 =

u11di1 for i ≥ 2 in Ψ∗p+1.
Then we have

Ψ′∗p+1 = {v2(p+1)
11 u2

11(1 + d2
21 + · · ·+ d2

M1)

+v
2(p+1)
11 u2

11

∥∥∥∥∥∥∥∥∥




a12

a22

...
aM2


(B1, · · · , BN )

∥∥∥∥∥∥∥∥∥

2

}z

v
2N−1+p(M+N−1)
11 uM+N−1

11 dddudvdadb,

whereB1 = b′21 andBj = b′2j , j ≥ 2.

We have poles −2N + p(M + N − 1)
2(p + 1)

and

−M + N

2
.

From all the inductions, we have poles

−2N + (k − 1)(M + N − 1)
2k

for k = 1, · · · , p + 1,

−M + N

2
andM .
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If N ≥ M − 1 then
2N + (k − 1)(M + N − 1)

2k
≥

2N + k(M + N − 1)
2(k + 1)

.

If N − p
p+2 ≥ M then 2N+p(M+N−1)

2(p+1) ≥ M .
Therefore
(i) If N ≥ M + 1 thenλ = M andθ = 1.
(ii) If N = M thenλ = 2N+p(M+N−1)

2(p+1) andθ = 1.
(iii) If N = M − 1 thenλ = N andθ = 2.
(iv) If N < M − 1 thenλ = N andθ = 1.

The case ofai1 + ai2 = 1. M does not appear.

As space is limited, the proof of Main Theorem 2
is omitted here. We also use a blowing up process, but
need more complicated method, since we have the constant
terms such asb∗3j .

5 Conclusion
In this paper, we consider the asymptotic form of the gener-
alization error in Bayesian estimation for the three layered
learning models.

Let p(y|x,w) = 1
(2π)M/2 exp(− 1

2 ||y − f(x,w)||2),
wherefk(x, w) =

∑2
i=1 aki tanh(

∑N
j=1 bijxj) for 1 ≤

k ≤ M . This model is the three layered neural network
with N input units,2 hidden units andM output units. If
the true distribution is zero, the generalization errorsG(n)
in (1) is given by Main Theorem 1 (a) withp = 2. If it is
trained for estimating the true distribution represented by
the model with1 hidden units,G(n) is obtained by Main
Theorem 2 (a).

The normal mixture model
p(x|w) = 1

(2π)N/2

∑2
i=1 a1i exp(−

PN
j=1(xj−bij)

2

2 ), with

a11 + a12 = 1 has the generalization errorG(n) given by
Main Theorem 2 (b) withp = 1 and M = 1, if a true

distribution isp(x|w∗) = 1
(2π)N/2 exp(−

PN
j=1(xj−b∗j )2

2 ).
If p = 1 and M = 1, Main Theorem 1 (b) corre-
sponds to the case of the true distributionp(x|w∗) =

1
(2π)N/2 exp(−

PN
j=1 x2

j

2 ). It is easily checked that Main
Theorem 1 (b) and Main Theorem 2 (b) are the same re-
sults if p = 1, since their difference is only(b∗j ) 6= 0 or
(b∗j ) = 0.

The applications of our result are as follows. From
these results, we can construct mathematical foundation
for analyzing and developing the precision of the MCMC
method [14], [15]. Also we would compare these values to
such as the generalization error of localized Bayes estima-
tion [16].

We could see that the blowing up method in algebraic
geometry can be effectively used for solving the problems
in the learning theory. Our future purpose is to improve our
method for applying arbitraryH andH ′.
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