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Abstract. Belief propagation (BP) is the calculation method which en-
ables us to obtain the marginal probabilities with a tractable computa-
tional cost. BP is known to provide true marginal probabilities when the
graph describing the target distribution has a tree structure, while do
approximate marginal probabilities when the graph has loops. The accu-
racy of loopy belief propagation (LBP) has been studied. In this paper,
we focus on applying LBP to a multi-dimensional Gaussian distribution
and analytically show how accurate LBP is for some cases.

1 Introduction

Belief propagation (BP) is the calculation method which enables us to obtain the
marginal probabilities with a tractable computational cost and has been widely
studied in the areas such as probabilistic inference for artificial intelligence, turbo
codes, code division multiple access (CDMA) systems, low-density parity check
(LDPC) codes, and probabilistic image processing. BP is known to provide true
marginal probabilities when the graph describing the target distribution has a
tree (singly connected) structure, while do approximate marginal probabilities
when the graph has loops (cycles).

The accuracy of loopy belief propagation (LBP) has been theoretically stud-
ied when the target distributions are discrete distributions [1]-[3] and Gaussian
Markov random fields mainly about the means [4]. The accuracy has also been
studied from the viewpoint of information geometry [5][6]. In probabilistic im-
age processing, the accuracy has been numerically studied as the accuracy of
estimated hyperparameters based on Gaussian graphical models [7][8].

In this paper, we focus on applying loopy belief propagation (LBP) to a multi-
dimensional Gaussian distribution whose inverse covariance matrix corresponds
to the graph with loops. Then, we mathematically show the differences between
true marginal densities and the approximate marginal densities calculated by
LBP. To be more specific, we give the exact solutions of messages and approxi-
mate marginal densities calculated by LBP and give the Kullback-Leibler (KL)



distances when the inverse covariance matrix corresponds to the graph with a
single loop. Next, we develop the results to the more general case that the graph
has a single loop and an arbitrary tree structure. Furthermore, we give the ex-
pansions of inverse variances of approximate marginal densities up to third-order
when the graph is allowed to have an arbitrary structure (i.e., multiloops).

The situation in which LBP is applied to a multi-dimensional Gaussian dis-
tribution can be seen for example in probabilistic image processing based on
Gaussian graphical models [7][8] and Markov random fields [4]. Besides, clarify-
ing the theoretical properties of LBP in the standard models such as a Gaussian
distribution helps to know the properties of more complex LBP and to design
LBP algorithms efficiently.

This paper is organized as follows. In section 2, we review the scheme for
belief propagation. In section 3, we give the main results of this paper. In section
4, we give the conclusion and future works.

2 Belief Propagation

Here, we review the scheme for Belief propagation. We review the belief propa-
gation for tree structures in section 2.1, loopy belief propagation in section 2.2,
and the LBP when we apply it to a multi-dimensional Gaussian distribution in
section 2.3.

2.1 Belief Propagation for tree structures

Let the target distribution to which we apply LBP be the that of pairwise form

p(x) =
1
Z

∏

{ij}∈B

Wij(xi, xj), (1)

where Z is the normalization constant and B is the set which shows the existences
of correlations between xi and xj . For example, when x = (x1, x2, x3, x4)T and
correlations exist between {x1, x2}, {x2, x3}, and {x1, x4} respectively, the set
B is expressed as B = {{12}, {23}, {14}}. When the graph given by B is a tree
graph, the marginal distributions {pi(xi)}, {pij(xi, xj)} are exactly calculated
as follows by using normalized messages {Mi→j}, {Mj→i}, ({ij} ∈ B).

pi(xi) =
1
Zi

∏

k∈Ni

Mk→i(xi),

pij(xi, xj) =
1

Zij

( ∏

k∈Ni\{j}
Mk→i(xi)

)
Wij(xi, xj)

( ∏

k∈Nj\{i}
Mk→j(xj)

)
. (2)

Here, both Zi and Zij are the normalization constants and Ni is the subset
of random variables which directly correlate with random variables xi. Ni is
so-called the set of nearest neighbor variables of xi.



2.2 Loopy Belief Propagation

Eqs.(2) are exactly correct when the graph given by B is a tree graph. In
loopy belief propagation, we also compose marginal distributions by eqs.(2)
when the graph given by B has loops. This leap of logic yields the problem of
convergence of LBP and gives marginal distributions approximately. Since the
marginal distributions {pi(xi)} and {pij(xi, xj)} should satisfy the constraints∫

pij(xi, xj)dxj = pi(xi) for consistency, messages {Mi→j} satisfy the equations
given by

Mi→j(xj) =
1

Z̃ij

∫ ∞

−∞
Wij(xi, xj)

∏

k∈Ni\{j}
Mk→i(xi)dxi,

Mj→i(xi) =
1

Z̃ji

∫ ∞

−∞
Wij(xi, xj)

∏

k∈Nj\{i}
Mk→j(xj)dxj . (3)

Note that there are 2|B| equations in total so that eqs.(3) are the decision equa-
tions for 2|B| messages {Mi→j}.

2.3 Gaussian Belief Propagation

We assume that the target probability density in eq.(1) is a multi-dimensional
Gaussian probability density whose mean vector is 0 and x ∈ Rd:

p(x) =

√
det S

(2π)d
exp

{
−1

2
xT Sx

}
. (4)

Here, S is an inverse covariance matrix and we denote the components of the
matrix S by (S)ij = si,j . Then, Wij(xi, xj) in eq.(1) can be expressed as

Wij(xi, xj) = exp
{
−1

2
(

si,i

|Ni|x
2
i + si,jxixj +

sj,j

|Nj |x
2
j )

}
, (5)

where |Ni| is the number of elements of subset Ni. For simplicity, we put si,i

|Ni| =
s̃i,i. We set the condition |Ni| > 0 for ∀i ∈ {1, · · · , d}.

We assume that the probability densities of messages {Mi→j} are Gaussian
densities:

Mi→j(xj) =

√
λi→j

2π
exp

{
−λi→j

2
x2

j

}
. (6)

Then, by substituting eqs.(6) into eqs.(3), we reduce eqs.(3) to the decision
equations for the parameters of inverse variances {λi→j} as follows.

λ̃i→j = − s2
i,j

si,i +
∑

k∈Ni\{j} λ̃k→i

. (7)



Here, {λ̃i→j} are λ̃i→j ≡ λi→j − s̃j,j . After obtaining the values of {λ̃i→j}
which satisfy eqs.(7), we compose messages {Mi→j} by eqs.(6). Next, we com-
pose marginal densities {p̃i(xi)} and {p̃ij(xi, xj)} approximately by substituting
eqs.(6) into eqs.(2). That is, we obtain marginal densities by substituting {λi→j}
which satisfy eqs.(7) into

p̃i(xi) ∝ exp
{
−

∑
k∈Ni

λk→i

2
x2

i

}
, p̃ij(xi, xj) ∝ exp

{
−(xi, xj)

S̃i,j

2

(
xi

xj

)}
,

S̃i,j ≡




s̃i,i +
∑

k∈Ni\{j}
λk→i si,j

si,j s̃j,j +
∑

k∈Nj\{i}
λk→j


 . (8)

Throughout this paper, we put the inverse variances of approximate marginal
densities calculated by LBP as Λi(≡

∑
k∈Ni

λk→i).

3 Main results of this paper

We consider the differences between true and approximate marginal densities
when we apply LBP to a multi-dimensional Gaussian density. We consider the
differences in each case (3.1, 3.2, 3.3). In section 3.1, we give the exact solu-
tions of messages {Mi→j} (equally the inverse variances {λi→j}), approximate
marginal densities p̃i(xi) and p̃ij(xi, xj) (equally {Λi} and {S̃i,i+1}), and the
KL distances when inverse covariance matrix S corresponds to the graph with
a single loop. In section 3.2, we develop the results of 3.1 to the graph with a
single loop and tree structures. In section 3.3, we give the expansions of inverse
covariances of marginal densities {Λi} when the covariances are very small. All
the proofs in section 3 are shown in [9].

3.1 On the Graphs with a Single Loop

We consider the case in which the inverse covariance matrix S can be described as
the graph which have only a single loop as illustrated in Fig.1. Then, without loss
of generality, we can consider the case that the set B is B = {{12}, {23}, · · · , {d−
1d}, {d1}}. For the graph with a single loop, we obtain the following theorem.

Theorem 1. When the inverse covariance matrix S corresponds to the graph
given by B = {{12}, {23}, · · · , {d−1d}, {d1}}, the inverse variances of messages
{λi→j} are given by

λi→i+1 =
si,i+1∆i,i+1 − si+1,i+2∆i+1,i+2 ±

√D
2∆i+1,i+1

,

λi→i−1 =
si,i−1∆i,i−1 − si−1,i−2∆i−1,i−2 ±

√D
2∆i−1,i−1

,

D ≡ (det S)2 + (−1)d4s1,2s2,3 · · · sd−1,dsd,1 detS, (9)
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Fig. 1. examples of a single loop

where i ∈ {1, 2, · · · , d} and periodic boundary conditions sd,d+1 ≡ sd,1, s1,0 ≡ s1,d

hold. ∆i,j are the cofactors of the matrix S.

Theorem 1 gives immediately the following corollary.

Corollary 1. When the inverse covariance matrix S corresponds to the graph
given by B = {{12}, {23}, · · · , {d − 1d}, {d1}}, the inverse variances {Λi} and
the inverse covariance matrices {S̃i,i+1} of approximate marginal densities are
given by

Λi =
detS

∆i,i
(1 +

(−1)d4s1,2 · · · sd,1

detS
)

1
2 , S̃i,i+1 =

(
Ei,i+1
∆i,i

si,i+1

si,i+1
Ei,i+1

∆i+1,i+1

)
, (10)

where

Ei,i+1 ≡ detS +
√D

2
− si,i+1∆i,i+1. (11)

In corollary 1, if s1,2, s2,3, · · · , sd,1 approach 0, we know that Λi and S̃i,i+1

approach

Λi → detS

∆i,i
, S̃i,i+1 →

(
det S
∆i,i

0
0 det S

∆i+1,i+1

)
(12)

respectively since Ei,i+1 → det S. These results are equivalent to the inverse co-
variance matrices of the true marginal densities. Taking the limit as s1,2, s2,3, · · · ,
sd,1 → 0 means that the graph with a single loop (e.g., Fig.1) turns to a tree
graph and LBP can calculate marginal densities exactly. Hence, corollary 1 agrees
with and explains the well-known fact that belief propagation is exactly correct
when the graph provided by a target distribution is a tree graph but incorrect
when the graph has loops.

When we calculate the KL distances between true and approximate marginal
densities in order to know the differences between both densities, we obtain the



following theorem. Here, KL and symmetrized KL (SKL) distances are defined
as follows.

KL(q(x)||p(x)) ≡
∫

q(x) log
q(x)
p(x)

dx, (13)

SKL(q(x), p(x)) ≡ KL(q(x)||p(x)) + KL(p(x)||q(x)). (14)

We note that a SKL distance satisfies the definition of distance although a KL
distance does not (since KL(q||p) 6= KL(p||q)).
Theorem 2. The KL and SKL distances between true marginal densities pi(xi)
and approximate marginal densities p̃i(xi) calculated by LBP are given by

KL(pi||p̃i) = −1
2

+
1
2
(1 + ε)

1
2 − 1

4
log

(
1 + ε

)
,

SKL(pi, p̃i) = −1 +
1
2
(1 + ε)−

1
2 +

1
2
(1 + ε)

1
2 . (15)

where ε is given by

ε ≡ (−1)d4s1,2 · · · sd,1

det S
. (16)

Similarly, the KL and SKL distances between pij(xi, xj) and p̃ij(xi, xj) are
given by

KL(pi,i+1||p̃i,i+1) = −1− 1
2

log(1− ∆̄i,i+1) +
1 +

√
1 + ε

2
+

si,i+1∆i+1,i

det S

−1
2

log

{
(
1 +

√
1 + ε

2
)2 − s2

i,i+1∆i,i∆i+1,i+1

(detS)2

}
,

SKL(pi,i+1, p̃i,i+1) = −2 +
[
1+

1
1− ∆̄i,i+1

{
(
1 +

√
1 + ε

2
− si,i+1∆i,i+1

detS
)2

−s2
i,i+1∆i,i∆i+1,i+1

(det S)2
}−1]1 +

√
1 + ε

2
, (17)

where we put ∆̄i,i+1 ≡ ∆2
i,i+1

∆i,i∆i+1,i+1
.

From the above theorem 2, we can know that both KL and SKL distances go
to 0 as ε tends to 0 since ∆̄i,i+1 tends to 0. We can say that ε is the control
parameter which decides the distances between both marginal densities. The
parameter ε decides the accuracy of LBP in the case that the target distribution
is a multi-dimensional Gaussian density whose inverse covariance matrix S forms
the graph with a single loop.

3.2 On the Graphs with a Single Loop and Tree Structures

From the results for a single loop in section 3.1, we can immediately develop
the results to the more general case that the graph given by B has a single
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loop and an arbitrary tree structure as illustrated in Fig. 2. For example, we
consider the graph shown by Fig.3. Then, in practice, we calculate the inverse
variances {Λi}. The variances {Λi} are obtained by solving eqs.(7) when d = 8
and B = {{12}, {23}, {31}, {14}, {25}, {26}, {37}, {78}}. The graph in Fig.3 can
be equivalent to the graph in Fig.4 after replacing inverse variances {si,i} as

s1,1 → s′1,1

(
≡ s1,1 −

s2
4,1

s4,4

)
, s2,2 → s′2,2

(
≡ s2,2 −

s2
5,2

s5,5
− s2

6,2

s6,6

)
,

s3,3 → s′3,3


≡ s3,3 −

s2
7,3

s7,7 − s2
8,7

s8,8


 (18)

(These replacements are understandable by solving eqs.(7) directly). In Fig.4,
the directed edges mean that there exist messages in those directions but not in
reverse directions (e.g., message M1→4(x4) exists but message M4→1(x1) does
not exist between x1 and x4). If we focus on variable nodes x1, x2, and x3, these
variable nodes form a closed single loop. Then, referring to the result of corollary
1, we obtain

Λ′i =
det S′

∆′
i,i

(1− 4s1,2s2,3s3,1

det S′
)

1
2 (19)



for i ∈ {1, 2, 3}. Here, S′ and ∆′
i,i are the inverse covariance matrix and the

cofactor respectively composed by {s′i,i} instead of {si,i}. The others {Λi}, i ∈
{4, · · · , 8} are calculated as follows by using the notation of continued fractions.

Λ′4 = s4,4 −
s2
1,4

Λ′1+
s2
4,1

s4,4
, Λ′5 = s5,5 −

s2
2,5

Λ′2+
s2
5,2

s5,5
, Λ′6 = s6,6 −

s2
2,6

Λ′2+
s2
6,2

s6,6
,

Λ′8 = s8,8 −
s2
7,8

Λ′7+
s2
8,7

s8,8
, Λ′7 = s7,7 −

s2
8,7

s8,8
− s2

3,7

Λ′3+
s2
7,3

s7,7−
s2
8,7

s8,8
(20)

(These equations are also understandable by solving eqs.(7)).
In a similar way, we obtain {λij}, {Λi}, {S̃i,j}, KL, and SKL distances in

various connected graphs which have at most a single loops.

3.3 Expansions of {Λi} at Small Covariances

In sections 3.1 and 3.2, we address the inverse covariance matrix S whose graph
structure is restricted to the graph with a single loop. In this section, we address
the inverse covariance matrix S whose graph is allowed to have an arbitrary
structure (i.e. the graph has multiloops) but the covariance is very small. To
achieve that, we introduce a new parameter s and change the off-diagonal com-
ponents of the matrix S to (S)ij = ssi,j , where s satisfy 0 ≤ s ≤ 1. If s = 0,
the matrix S turns to a diagonal matrix and if s = 1, the matrix S turns to
the original matrix S in eq.(4). Then, our aim is to obtain the expansions of the
inverse variances {Λi} with respect to s:

Λi(s) = ai0 − ai1s− ai2s
2 − ai3s

3 + · · · (21)

when s satisfies s ¿ 1.
In this paper, for simplicity, we derive the terms up to third-order. Before

that, we prepare the following theorem for simultaneous equations which {Λi}
satisfy.

Theorem 3. The approximate inverse variances {Λi} calculated by LBP satisfy
either of

∑d
i=1 2|Ni| simultaneous equations

|Ni| − 2 +
2si,i

Λi
=

∑

j∈Ni

±
√

1 +
4s2s2

j,i

ΛjΛi
, i ∈ {1, · · · , d}, (22)

where ± takes an arbitrary sign for each term in the summation.

There exist
∑d

i=1 2|Ni| simultaneous equations since the sign ± assigns either of
positive or negative for each term. In addition, we note that there exist extra
simultaneous equations which have no solution. For example, there is no solution
when |Ni| ≥ 2 for ∃i and all the signs in the summation are negative.

When s = 0 in the matrix S, approximate inverse variance Λi should be
equal to the true inverse variance si,i (i.e., Λi(0) = si,i for i ∈ {1, · · · , d}) since



the matrix S becomes a diagonal matrix and LBP algorithm turns to BP algo-
rithm for tree structures. By imposing these conditions, we obtain the following
theorem.

Theorem 4. For
∑d

i=1 2|Ni| simultaneous equations in Theorem 3, conditions
Λi(0) = si,i, i ∈ {1, · · · , d} holds if and only if all the signs in the summation
are positive. That is, the simultaneous equations are given by

|Ni| − 2 +
2si,i

Λi
=

∑

j∈Ni

√
1 +

4s2s2
j,i

ΛjΛi
, i ∈ {1, · · · , d}. (23)

Then, the solutions of the inverse variances {Λi} which satisfy eqs.(23) are ex-
panded with respect to s as follows.

Λi(s) = si,i −
d∑

j=1( 6=i)

s2
j,i

sj,j
s2 + O(s4). (24)

Compared with the result of theorem 4, the inverse variances of true marginal
densities are expanded as follows.

det S

∆i,i
= si,i −

d∑

j=1(6=i)

s2
j,i

sj,j
s2 +

si,i

3
[tr(S−1

d So)3 − tr{(Sd)−1
i,i (So)i,i}3]s3

+O(s4). (25)

Here, matrices Sd and So are the diagonal and off-diagonal matrices which satisfy
S = Sd + sSo respectively. Matrices (Sd)i,i and (So)i,i are the minor matrices of
Sd and So with the i-th row and column omitted. From the eqs.(24)(25), we can
know that the approximate inverse variances {Λi} calculated by LBP give exact
coefficients up to second-order term but yield the differences from third-order
term. When we calculate the KL distances, we obtain the following theorem.

Theorem 5. KL distances from true marginal densities pi(xi) to approximate
marginal densities p̃i(xi) calculated by LBP are expanded as follows with respect
to s for i ∈ {1, 2, · · · , d}.

KL(pi||p̃i) =
(
tr

(S−1
d So)3 − {(Sd)−1

i,i (So)i,i}3
6

)2

s6 + O(s7). (26)

Theorem 5 tells us that approximate marginal densities calculated by LBP are
how close to the true marginal densities when covariances in S are very small.

4 Conclusion and Future Works

In this paper, we analytically show how accurate LBP is when the target distri-
bution is a multi-dimensional Gaussian distribution. In particular, we calculate



the fixed point, approximate marginal densities, and KL distances exactly when
matrix S forms the graph with a single loop. Then, we know that a control pa-
rameter ε decides the accuracy. Next, we develop the result to the more general
case. Furthermore, we show the series expansions of inverse variances {Λi(s)}
and KL distances up to third-order with respect to s when the matrix S forms
an arbitrary graph. These results contribute to the foundation for understanding
theoretical properties underlying more complex LBP algorithms and designing
LBP algorithms efficiently. We have several future works, some of which are to
derive the convergence rate to a fixed point, to obtain the higher order terms in
eqs.(24), and to compare the theoretical results with numerical experiments.
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