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2 Stochastic Complexities

Mathematical Symbols
x : M dimensional input
y : N dimensional output
w, w0 : d dimensional parameter
I(w) : Fisher information matrix
W0 : subset of parameter space
n : number of any training samples.
G(n) : generalization error
F (n) : average stochastic complexity
λ : positive and rational number
m : natural number
O(1) : bounded function of n
ψ(w) : a priori probability distribution on the parameter space
p(x, y|w) : learning machine
q(x, y) : true simultaneous distribution of input and output
K(w) : Kullback information
J(z) : zeta function for learning theory
w0 : true parameter
Xn = (X1, X2, ..., Xn) : set of training samples
p(w|Xn) : a posteriori probability density function
p(x, y|Xn) : average inference of the Bayesian distribution
En{} : the expectation value over all sets of n training samples
Kn(w) : empirical Kullback information
f , f1, f2 : real analytic functions
V , Vw : neighborhood of w
U , Uw : real analytic manifold
µ : proper analytic map from U to V
E : subset of U
u = (u1, · · · , ud) : local analytic coordinate
s1, · · · , sd : non-negative integers
W : compact subset
g, g1, g2 : C∞− functions with compact support W .
ζ(z) : zeta function
Ui : d-dimensional real space
M : a real manifold
(ξ1i, · · · , ξdi) : coordinate of Ui

π : proper analytic map from M to Rd

X : subspace of Rd

A : H ×M matrix
B : N ×H matrix
T , T1, T2, : matrix
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||T || =
√∑

i,j |tij|2 : norm of any matrix T = (tij)

q(x) : probability density function of x
B0, A0 : true parameter
r : rank of B0A0

X = (
∫

xixjq(x)dx) : matrix
c1, c2 > 0 : positive numbers
S = BA−B0A0 : matrix
Q : orthogonal matrix
−Λ(f, g) : maximum pole of ζ(z)
a ∈ R− {0} : number
Mat(N ′, M ′) : set of N ′ ×M ′ matrices
α, β, γ : positive numbers
P0, Q0 : regular matrices
Φ : function of A and B
C1 = (c

(1)
ij ) : r × r matrix

C2 = (c
(2)
ij ) : (N − r)× r matrix

C3 = (c
(3)
ij ) : r × (M − r) matrix

A′ : H ×M matrix
B′ : N ×H matrix
A1 : r × r matrix
A2 : (H − r)× r matrix
A3 : r × (M − r) matrix
A4 = (aij) : (H − r)× (M − r) matrix
B1 : r × r matrix
B2 : (N − r)× r matrix
B3 : r × (H − r) matrix
B4 = (bij) : (N − r)× (H − r) matrix
Φ′, Φ” : functions of C1, C2, C3, A4 and B4

ψ′(w′) : C∞− function with compact support W ′

E : r × r unit matrix
s : positive integer
A(s+1) : H − r − s×M − r − s
B(s+1) : N − r ×H − r − s
bs+1 : N − r vector
Di(akl) : function of the entries of the matrix A4 excluding the entries of

A(s+1)

ãs+1 : M − r − s− 1 vector
as+1 : H − r − s− 1 vector
Col1(Di) : first column of Di

D′
i : Di = (Col1(Di) D′

i)
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`(s) : function from integers to real numbers
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Abstract

Reduced rank regression extracts an essential information from ex-
amples of input-output pairs. It is understood as a three-layer neural
network with linear hidden units. However, reduced rank approxima-
tion is a non-regular statistical model which has a degenerate Fisher
information matrix. Its generalization error had been left unknown
even in statistics. In this paper, we give the exact asymptotic form of
its generalization error in Bayesian estimation, based on resolution of
learning machine singularities. For this purpose, the maximum pole of
the zeta function for the learning theory is calculated. We propose a
new method of recursive blowing-ups which yields the complete desin-
gularization of the reduced rank approximation.

Key words and phrases. Stochastic complexity, generalization error,
reduced rank regression models, non-regular learning machines, Bayesian es-
timate, resolution of singularities, Kullback information, zeta function.

1 Introduction

Hierarchical learning machine such as reduced rank regression, multi-layer
perceptron, normal mixture and Boltzmann machine has its singular Fisher
matrix function I(w) for a parameter w. Specifically, det I(w0) = 0 for a
particular parameter w0, representing some small model. The parameter
w0 is not identifiable, if and only if, the subset, which consists of param-
eters representing the small model is an analytic variety in all parameter
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space. Such a learning model is called a non-regular (non-identifiable) sta-
tistical model. For example, consider a learning machine p(y|x,A, B) =

1
(
√

2π)2
exp(−1

2
||y −BAx||2), of the reduced rank approximation with a 2× 2

matrix A = (aij) and a 2 × 2 matrix B = (bij). Assume that this machine
estimates the true distribution p(y|x,A0, B0) where B0A0 = 0. Denote the
subset of the parameters representing the small model by

W0 = {(A,B); p(y|x,A, B) = p(y|x,A0, B0)}.

Then we have

W0 ⊃ {(A,B); A = 0} ∪ {(A,B); B = 0}.

Recently, the asymptotic form of the Bayesian stochastic complexity has
been obtained, using the method of resolution of singularities by Watanabe
(1999, 2001a, 2001b). Let n be the number of any training samples. The
average stochastic complexity (the free energy) F (n) is asymptotically equal
to

F (n) = λ log n− (m− 1) log log n + O(1),

where λ is a positive rational number, m is a natural number and O(1) is
a bounded function of n. Hence, if exists, the Bayesian generalization error
G(n) has an asymptotic expansion given by

G(n) ∼= λ/n− (m− 1)/(n log n).

Let ψ(w) be a certain a priori probability density function, q(x, y) the true
simultaneous distribution of input and output, and p(x, y|w) the learning
model. The Kullback information K(w) can be formulated as

K(w) =
∫

q(x, y) log{q(x, y)/p(x, y|w)}dxdy.

Then the zeta function for the learning theory is defined by

J(z) =
∫

K(w)zψ(w)dw.

Watanabe (1999, 2001a, 2001b) proved that the maximum pole of J(z) (as
real numbers) is −λ and its order is m, calculated by using the blowing-up
process. For regular models, λ = d/2 and m = 1, where d is the dimension
of the parameter space. Non-regular models have smaller value λ than d/2,
so they are effective learning machines than regular ones provided that the
Bayes estimation is applied.
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In Watanabe & Watanabe (2003), the upper bound of the constant λ for
the reduced rank regression model was obtained. The exact value for λ has
been left unknown.

In this paper, we use the inductive method to obtain the exact value
λ for the reduced rank regression model, and give the asymptotic form of
the stochastic complexity explicitly. Reduced rank regression estimates the
conditional probability by using a reduced rank linear operator from higher
dimensional input to higher dimensional output. The aim of this model is to
find small rank relation between input and output. The model is a three-layer
neural network with linear hidden units. In order to be able to understand
characters of layered neural networks, it is important to analyze the model
mathematically.

The proposed method in this paper is recursive blowing-ups. By Hiron-
aka’s Theorem(1964), it is known that the desingularization of an arbitrary
polynomial can be obtained by using the blowing-up process. However the
desingularization of any polynomial in general, although it is known as a
finite process, is very difficult.

It is well-known that there are many information criteria for statistical
model selection of regular statistical models, for example, model selection
methods AIC (Akaike (1974)), TIC (Takeuchi (1976)), HQ (Hannan & Quinn
(1979)), NIC (Murata, Yoshizawa & Amari (1994)), BIC (Schwarz (1978)),
MDL (Rissanen (1984)). However, the theory of regular statistical models
cannot be applied to analyzing such non-regular models. The result of this
paper clarifies the asymptotic behavior of the marginal likelihood and the
stochastic complexity.

In practical usage, the stochastic complexity is calculated by some nu-
merical calculation, for example, the Markov Chain Monte Carlo method
(MCMC). By the MCMC method, the estimated values of marginal likeli-
hoods had been calculated for hyper-parameter estimations and model se-
lection methods of complex learning models, but the theoretical values were
not known. The theoretical values of marginal likelihoods are given in this
paper. This enables us to construct mathematical foundation for analyzing
and developing the precision of the MCMC method.

2 Bayesian Learning models

In this section, we give the framework of Bayesian learning.
Let RM be the input space, RN the output space and W the parame-

ter space contained in Rd. Take x ∈ RM , y ∈ RN and w ∈ W . Consider
a learning machine p(x, y|w) and a fixed a priori probability density func-
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tion ψ(w). Assume that the true probability distribution is expressed by
p(x, y|w0), where w0 is fixed.

Let Xn = (X1, X2, ..., Xn), Xi = (xi, yi) be arbitrary n training samples.
Xi’s are randomly selected from the true probability distribution p(x, y|w0).
Then, the a posteriori probability density function p(w|Xn) is written by

p(w|Xn) =
1

Zn

ψ(w)
n∏

i=1

p(Xi|w),

where

Zn =
∫

W
ψ(w)

n∏

i=1

p(Xi|w)dw.

So the average inference p(x, y|Xn) of the Bayesian distribution is given
by

p(x, y|Xn) =
∫

p(x, y|w)p(w|Xn)dw.

Let G(n) be the generalization error (the learning efficiency) as follows.

G(n) = En{
∫

p(x, y|w0) log
p(x, y|w0)

p(x, y|Xn)
dxdy},

where En{·} is the expectation value.
Then the average stochastic complexity (the free energy )

F (n) = −En{log
∫

exp(−nKn(w))ψ(w)dw},

satisfies
G(n) = F (n + 1)− F (n),

where

Kn(w) =
1

n

n∑

i=1

log
p(Xi|w0)

p(Xi|w)
.

Define the zeta function J(z) of the learning model by

J(z) =
∫

K(w)zψ(w)dw,

where K(w) is the Kullback information;

K(w) =
∫

p(x, y|w0) log
p(x, y|w0)

p(x, y|w)
dx.

Then, for the maximum pole −λ of J(z) and its order m, we have

F (n) = λ log n− (m− 1) log log n + O(1),(1)
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and

G(n) ∼= λ/n− (m− 1)/(n log n),(2)

where O(1) is a bounded function of n.

The values λ and m can be calculated by using the blowing-up process.

3 Resolution of singularities

In this section, we introduce the Hironaka’s theorem (1964) on the resolution
of singularities. The blowing up is the main tool in the resolution of singu-
larities of an algebraic variety. We also show its application in the field of
learning theory (Watanabe, 1999, 2001a, 2001b).

Theorem 1 (Hironaka (1964)) Let f be a real analytic function in a neigh-
borhood of w = (w1, · · · , wd) ∈ Rd with f(w) = 0. There exist an open set
V 3 w, a real analytic manifold U and a proper analytic map µ from U to V
such that

(1) µ : U − E → V − f−1(0) is an isomorphism, where E = µ−1(f−1(0)),

(2) for each u ∈ U , there is a local analytic coordinate (u1, · · · , ud) such
that f(µ(u)) = ±us1

1 us2
2 · · · usd

d , where s1, · · · , sd are non-negative integers.

The above theorem is an analytic version of the Hironaka’s theorem used
by Atiyah (1970).

Theorem 2 (Atiyah (1970), Bernstein (1972), Björk (1979), Sato
& Shintani (1974))

Let f(w) be an analytic function of a variable w ∈ Rd. Let g(w) be a
C∞− function with compact support W .

Then

ζ(z) =
∫

W
|f(w)|zg(w)dw,

is a holomorphic function in the right-half plane.

Furthermore, ζ(z) can be analytically extended to a meromorphic function
on the entire complex plane. Its poles are negative rational numbers.

Theorem 2 follows from Theorem 1.

Applying the Hironaka’s theorem to the Kullback information K(w), for
each w ∈ K−1(0) ∩W , we have a proper analytic map µw from an analytic
manifold Uw to a neighborhood Vw of w satisfying Theorem 1 (1) and (2).
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Then the local integration on Vw of the zeta function J(z) of the learning
model is

Jw(z) =
∫

Vw

K(w)zψ(w)dw

=
∫

Uw

(u2s1
1 u2s2

2 · · · u2sd
d )zψ(µw(u))|µ′w(u)|du.

Therefore, the values Jw(z) can be obtained. For each w ∈ W \ K−1(0),
there exists a neighborhood Vw such that K(w′) 6= 0, for all w′ ∈ Vw. So
Jw(z) =

∫
Vw

K(w)zψ(w)dw has no poles. Since the set of parameters W is
compact, the poles and their orders of J(z) are computable.

Next we explain the construction of blowing up. There are three kinds
of blowing up; blowing up at the point, blowing up along the manifold and
blowing up with respect to the coherent sheaf of ideals. The blowing up
along the manifold is a generalization of the blowing up at the point. The
blowing up with respect to the coherent sheaf of ideals is a generalization of
the blowing up along the manifold.

Here let us explain only the blowing up along the manifold used in this
paper. Define a manifold M by gluing k open sets Ui

∼= Rd, i = 1, 2, · · · , k
(d ≥ k) as follows.

Denote the coordinate of Ui by (ξ1i, · · · , ξdi).
Define the equivalence relation

(ξ1i, ξ2i, · · · , ξdi) ∼ (ξ1j, ξ2j, · · · , ξdj)

at ξji 6= 0 and ξij 6= 0, by

ξij = 1/ξji, ξjj = ξiiξji, ξhj = ξhi/ξji, (1 ≤ h ≤ k, h 6= i, j),
ξ`j = ξ`i, (k + 1 ≤ ` ≤ d).

Set M =
∐k

i=1 Ui/ ∼.
Define the blowing map π : M→ Rd by

(ξ1i, · · · , ξdi) 7→ (ξiiξ1i, · · · , ξiiξi−1i, ξii, ξiiξi+1i, · · · , ξiiξki, ξk+1i, · · · , ξdi),

for each (ξ1i, · · · , ξdi) ∈ Ui.
This map is well-defined and called the blowing up along

X = {(w1, · · · , wk, wk+1, · · · , wd) ∈ Rd | w1 = · · · = wk = 0}.
The blowing map satisfies
(1) π : M→ Rd is proper,
(2) π : M− π−1(X) → Rd −X is an isomorphism.
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4 Learning curves of reduced

rank regression model

In this section, we show how to obtain the maximum pole of the zeta function
of learning models in the case of the reduced rank regression model.

Let

{w = (A,B) | A is an H ×M matrix, B is an N ×H matrix},
be the set of parameters.

We define the norm of a matrix T = (tij) by ||T || =
√∑

i,j |tij|2.
Denote the input value by x ∈ RM with a probability density function

q(x). Assume that all eigenvalues of the M ×M matrix X = (
∫

xixjq(x)dx)
are positive numbers. Such a matrix is called a positive definite.

Then the output value y ∈ RN of the reduced rank regression model is
given by

y = BAx.

Consider the statistical model

p(y|x,w) =
1

(
√

2π)N
exp(−1

2
||y −BAx||2),

with Gaussian noise. Let w0 = (A0, B0) be the true parameter. Assume
that the a priori probability density function ψ(w) is a C∞− function with
compact support W , satisfying ψ(A0, B0) > 0.

We can apply Section 2, by using p(x, y|w0) = p(y|x,w0)q(x) and n train-
ing samples Xn = (X1, X2, ..., Xn), Xi = (xi, yi) which are randomly selected
from the true probability distribution p(y|x,w0).

In Main Theorem, we give the formulas for the parameters λ and m
appearing Equation (1) and (2).

Lemma 1 There exist constants c1 > 0 and c2 > 0 such that

c1||BA−B0A0||2 ≤ K(w) ≤ c2||BA−B0A0||2.(3)

Proof
Put

q(x, y) = p(y|x, (A0, B0))q(x).

Then we have the Kullback information

K(w) =
∫

q(x, y) log
p(y|x, (A0, B0))

p(y|x,w)
dxdy

=
1

2

∫
||(BA−B0A0)x||2q(x)dx.
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Let S = BA−B0A0 = (si,j) and Q an orthogonal matrix such that QtXQ
is diagonal.

Then, we have

K(w) =
1

2

∫
||Sx||2q(x)dx =

1

2

∫ ∑

i

(
∑

j

sijxj)
2q(x)dx

=
1

2

∑

i,j1,j2

sij1sij2

∫
xj1xj2q(x)dx

=
1

2
Tr(SXSt) =

1

2
Tr(SQQtXQ(SQ)t).

Since we assume all eigenvalues of X are positive numbers, there exist
c1 > 0 and c2 > 0 such that

c1Tr(SQ(SQ)t) = c1Tr(SSt) ≤ K(w) ≤ c2Tr(SQ(SQ)t) = c2Tr(SSt).

Since Tr(SSt) = ||S||2, this completes the proof.
Q.E.D.

Lemma 2 (Watanabe (2001c)) Let f(w), f1(w), f2(w) be analytic func-
tions of w ∈ Rd. Let g(w), g1(w), g2(w) be C∞− functions with compact
support W .

Put
ζ(z) =

∫

W
|f(w)|zg(w)dw.

Denote the maximum pole of ζ(z) by −Λ(f, g).
If |f1| ≤ |f2| and g1 ≥ g2 then we have Λ(f1, g1) ≤ Λ(f2, g2).
In particular, for any number a ∈ R− {0},

Λ(af, g) = Λ(f, ag) = Λ(f, g).

Lemma 1 and Lemma 2 yield that the zeta function can be written as
follows:

J(z) =
∫

W
||BA−B0A0||2zψ(w)dw.

Main Theorem
Let r be the rank of B0A0.
The maximum pole −λ of J(z) is

max{−(N + M)r − r2 + s(N − r) + (M − r − s)(H − r − s)

2
|

0 ≤ s ≤ min{M + r,H + r}}.
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Furthermore, F (n) and G(n) in Equation (1) and (2) are given by using
the following maximum pole −λ of J(z) and its order m:

Case (1) Let N + r ≤ M + H, M + r ≤ N + H and H + r ≤ M + N .
(a) If M + H + N + r is even, then m = 1 and

λ =
−(H + r)2 −M2 −N2 + 2(H + r)M + 2(H + r)N + 2MN

8
.

(b) If M + H + N + r is odd, then m = 2 and

λ =
−(H + r)2 −M2 −N2 + 2(H + r)M + 2(H + r)N + 2MN + 1

8
.

Case (2) Let M + H < N + r. Then m = 1 and λ = HM−Hr+Nr
2

.
Case (3) Let N + H < M + r. Then m = 1 and λ = HN−Hr+Mr

2
.

Case (4) Let M + N < H + r. Then m = 1 and λ = MN
2

.

For practical use, the case of M >> H and N >> H are considered, so
Case (4) does not occur.

This model has MH + NH dimensional parameter space. Therefore,
the maximum pole is −(MH + NH)/2 for regular models with MH + NH
dimensional parameter space. In other words, it does not depend on the true
distribution parameter w0 for regular models. However, non-regular models
have λ depending on w0. So, it is difficult to construct the model selection
methods for non-regular models.

The Fisher information matrix of the model is singular for each case since
λ < (MH + NH)/2.

In order to prove Main Theorem, we need the following three lemmas.

Lemma 3 Let U be a neighborhood of w0 ∈ Rd. Let T1(w), T2(w), T (w) be
functions from U to Mat(N ′, H ′), Mat(N ′,M ′), Mat(H ′,M ′) respectively.

Assume that the function ||T (w)|| is bounded.
Then, there exist positive constants α > 0 and β > 0 such that

α(||T1||2 + ||T2||2) ≤ ||T1||2 + ||T2 + T1T ||2
≤ β(||T1||2 + ||T2||2).

Proof
Since ||T (w)|| is bounded, there exists β > 3 such that

||T1||2 + ||T2 + T1T ||2 ≤ ||T1||2 + 2||T2||2 + 2||T1T ||2
≤ β(||T1||2 + ||T2||2).
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Also, there exists γ > 3 such that

||T2||2 ≤ 2(||T2 + T1T ||2 + || − T1T ||2)
≤ 2(||T2 + T1T ||2 + γ||T1||2),

and hence

||T1||2 + ||T2||2 ≤ 2||T2 + T1T ||2 + (2γ + 1)||T1||2
≤ (2γ + 1)(||T2 + T1T ||2 + ||T1||2).

Putting α = 1/(2γ + 1) completes the proof.
Q.E.D.

Lemma 4 Let U be a neighborhood of w0 ∈ Rd. Also let T (w) be a function
from U to Mat(H ′, M ′).

Let P0, Q0 be any regular M ′ ×M ′, H ′ ×H ′ matrices, respectively.
Then there exist positive constants α > 0, β > 0 such that

α||T ||2 ≤ ||P0TQ0||2 ≤ β||T ||2.

Proof
There exists β > 0 such that

||P0TQ0||2 ≤ β||T ||2.
Also, there exists γ > 0

||T ||2 = ||P−1
0 P0TQ0Q

−1
0 ||2 ≤ γ||P0TQ0||2.

The proof follows by putting α = 1/γ.
Q.E.D.

Lemma 5 Put
Φ = ||BA−B0A0||2.

Then there exist a function Φ′ and an a priori probability density function
ψ′(w′) such that

(a) Φ′ = ||C1||2 + ||C2||2 + ||C3||2 + ||B4A4||2,
where C1 is an r × r matrix, C2 is an (N − r) × r matrix, C3 is an
r × (M − r) matrix, A4 is an (H − r)× (M − r) matrix and B4 is an
(N − r)× (H − r) matrix,

(b) ψ′(w′) is a C∞− function with compact support W ′, where ψ′(0) > 0
and w′ = (C1, C2, C3, B4, A4),
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(c) the maximum pole of
∫
W Φzψdw is equal to that of

∫
W ′ Φ′zψ′dw′.

Proof
Since the rank of B0A0 is r, there exist regular matrices P0, Q0 such that

P−1
0 B0A0Q

−1
0 =

(
E 0
0 0

)
, where E is the r × r identity matrix.

Change variables from B,A to B′, A′ by B′ = P−1
0 B and A′ = AQ−1

0 .
Then

Φ = ||P0(B
′A′ −

(
E 0
0 0

)
)Q0||2.

Let A′ =

(
A1 A3

A2 A4

)
and B′ =

(
B1 B3

B2 B4

)
, where

A1 is an r × r matrix, A3 is an r × (M − r) matrix,
A2 is an (H − r)× r matrix, A4 is an (H − r)× (M − r) matrix,
B1 is an r × r matrix, B3 is an r × (H − r) matrix,
B2 is an (N − r)× r matrix, B4 is an (N − r)× (H − r) matrix.

Let U(A′,B′) be a sufficiently small neighborhood of any point (A′, B′) with

B′A′ −
(

E 0
0 0

)
= 0.

Since the rank
(

B1 B3

)(
A1

A2

)
is r, we can assume A1 is regular. Thus

we can change the variables from B1, B2 to C1, C2 by C1 = B1A1 +B3A2−E
and C2 = B2A1 + B4A2.

Thus,

B′A′ −
(

E 0
0 0

)
=

(
C1 (C1 + E −B3A2)A

−1
1 A3 + B3A4

C2 (C2 −B4A2)A
−1
1 A3 + B4A4

)
.

Changing the variables from A4 to A′
4 by A′

4 = −A2A
−1
1 A3 + A4 gives

B′A′ −
(

E 0
0 0

)
=

(
C1 C1A

−1
1 A3 + A−1

1 A3 + B3A
′
4

C2 C2A
−1
1 A3 + B4A

′
4

)
.

By changing the variables from A3 to A′
3 by A′

3 = A−1
1 A3 + B3A

′
4, we

obtain

B′A′ −
(

E 0
0 0

)
=

(
C1 C1(A

′
3 −B3A

′
4) + A′

3

C2 C2(A
′
3 −B3A

′
4) + B4A

′
4

)
,
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and

Φ = ||P0

(
C1 C1(A

′
3 −B3A

′
4) + A′

3

C2 C2(A
′
3 −B3A

′
4) + B4A

′
4

)
Q0||2.

By Lemma 2 and Lemma 4, the maximum pole of
∫
U(A′,B′)

Φzψdw is equal

to that of
∫

U(A′,B′)
||

(
C1 C1(A

′
3 −B3A

′
4) + A′

3

C2 C2(A
′
3 −B3A

′
4) + B4A

′
4

)
||2zψdw.

Then Lemma 2 and Lemma 3 yield that the maximum pole of∫
U(A′,B′)

Φzψdw is equal to that of

∫

U(A′,B′)
||

(
C1 A′

3

C2 B4A
′
4

)
||2zψdw.

Let C3 = A′
3, A4 = A′

4 and

ψ′(C1, C2, C3, A4, B4) = ψ(A,B).

The proof follows from the fact that the poles of the above function are

same when (A′, B′) with B′A′ −
(

E 0
0 0

)
= 0 varies.

Q.E.D

Before the proof of Main Theorem, let us give some notation.
Since we often change the variables by using the blowing-up process, it is

more convenient for us to use the same symbols aij rather than a′ij, a′′ij, · · ·,
etc, for the sake of simplicity. For instance,

“Let

{
a11 = u11

aij = u11aij, (i, j) 6= (1, 1).
”

instead of

“Let

{
a11 = u11

aij = u11a
′
ij, (i, j) 6= (1, 1).

”

Proof of Main Theorem

Let A4 =




a11 · · · a1,M−r

a21 · · · a2,M−r
...

aH−r,1 · · · aH−r,M−r




, B4 =




b11 · · · b1,H−r

b21 · · · b2,H−r
...

bN−r,1 · · · bN−r,H−r




.

Suppose that C1, C2 and C3 are as in Lemma 5. Denote C1 = (c
(1)
ij ),

C2 = (c
(2)
ij ) and C3 = (c

(3)
ij ). We need to calculate poles of the following

function by using the blowing-up process together with an inductive method.



M. Aoyagi and S. Watanabe 13

Let `(j) = (N + M)r − r2 + j(N − r) + (M − r − j)(H − r − j)− 1 for
j = 0, · · · , min{H − r,M − r}.

Assume

Φ′′ = u2
11 · · ·u2

ss(||C1||2 + ||C2||2 + ||C3||2 +
s∑

i=1

||bi||2(4)

+||
s∑

i=1

biDi + B(s+1)A(s+1)||2),

where B(s+1) =




b1,s+1 · · · b1,H−r

b2,s+1 · · · b2,H−r
...

bN−r,s+1 · · · bN−r,H−r




, A(s+1) =




as+1,s+1 · · · as+1,M−r

as+2,s+1 · · · as+2,M−r
...

aH−r,s+1 · · · aH−r,M−r




and bi =




b1i
...

bN−r,i


 for i = 1, · · · , H − r.

Di(akl) is a function, defined on the entries of the matrix, obtained from
A4 by omitting the entries of A(s+1). The definition of the function Di(akl)
will be given recursively later on in Equation (5) below.

Also we inductively have poles

−`(s) + 1

2
= −(N + M)r − r2 + s(N − r) + (M − r − s)(H − r − s)

2
.

(Basis of the induction)
Construct the blowing-up of Φ′ along the submanifold {C1 = C2 = C3 =

A4 = 0}.

Let





c
(1)
11 = v,

c
(1)
ij = vc

(1)
ij , (i, j) 6= (1, 1),

C2 = vC2, C3 = vC3, A4 = vA4.
Then we have

Φ′ = v2(1 +
∑

(i,j)6=(1,1)

(c
(1)
ij )2 + ||C2||2 + ||C3||2 + ||B4A4||2).

Here the Jacobian is v`(0). Therefore we have the pole

−`(0) + 1

2
,

since

Φ′zdw′ = Φ′zv`(0)dv
∏

(i,j)6=(1,1)

dc
(1)
ij

∏

(i,j)

dc
(2)
ij

∏

(i,j)

dc
(3)
ij

∏

(i,j)

daij

∏

(i,j)

dbij,
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in this coordinate.
If we set the general case as c

(1)
j,i = v, c

(2)
j,i = v, c

(3)
j,i = v, we obtain the same

pole.
Consider another transformation.

Let





C1 = u11C1, C2 = u11C2, C3 = u11C3,
a11 = u11,
aij = u11aij, (i, j) 6= (1, 1).

By the symmetry of the norm function, this setting is the general case as
ai,j = u11.

Then we have

Φ′ = u2
11(||C1||2 + ||C2||2 + ||C3||2

+||b1 + B(2)a1||2 + ||( b1 B(2) )

(
ã1

A(2)

)
||2),

where ã1 = (a12 · · · a1,M−r) and a1 = (a21 · · · aH−r,1)
T ( T denotes the

transpose).
Put b1 = b1 + B(2)a1. Then

Φ′ = u2
11(||C1||2 + ||C2||2 + ||C3||2

+||b1||2 + ||
(

b1 −B(2)a1 B(2)
) (

ã1

A(2)

)
||2)

= u2
11(||C1||2 + ||C2||2 + ||C3||2

+||b1||2 + ||
(

b1 0
) (

ã1

A(2)

)
+ B(2)

(
−a1 E

) (
ã1

A(2)

)
||2)

= u2
11(||C1||2 + ||C2||2 + ||C3||2 + ||b1||2

+||b1ã1 + B(2)
(
−a1ã1 + A(2)

)
||2).

Let A(2) = −a1ã1 + A(2), then we have Equation (4) with s = 1;

Φ′ = u2
11(||C1||2 + ||C2||2 + ||C3||2 + ||b1||2 + ||b1ã1 + B(2)A(2)||2).

The Jacobian of this setting is u
`(0)
11 .

By the symmetry of the norm function, it is enough to consider the above
two cases.

Now we apply the induction method to Equation (4).
(Inductive step)
Construct the blowing-up of Φ′′ in (4) along the submanifold {C1 = C2 =

C3 = bi = A(s+1) = 0, 1 ≤ i ≤ s}.

Let





c
(1)
11 = v,

c
(1)
ij = vc

(1)
ij , (i, j) 6= (1, 1),

bj = vbj, 1 ≤ j ≤ s, C2 = vC2, C3 = vC3, A
(s+1) = vA(s+1).
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Substituting them into Equation (4) gives

Φ′′ = u2
11 · · · u2

ssv
2(1 +

∑

(i,j)6=(1,1)

(c
(1)
ij )2 + ||C2||2 + ||C3||2 +

s∑

i=1

||bi||2

+||
s∑

i=1

biDi + B(s+1)A(s+1)||2).

Here the Jacobian is is u
`(0)
11 · · · u`(s−1)

ss v`(s).
Because

Φ′zdw′ = Φ′′zu`(0)
11 · · · u`(s−1)

ss v`(s)dw′′,

in this new coordinate w′′, we have the poles

−`(0) + 1

2
, · · · ,−`(s) + 1

2
.

If we set the general case as c
(1)
j,i = u, c

(2)
j,i = u, c

(3)
j,i = u, bj,i = u, we obtain

the same pole by symmetry.

Next let





as+1,s+1 = us+1,s+1,
aj` = us+1,s+1aj`, s + 1 ≤ j ≤ H − r, s + 1 ≤ ` ≤ M − r,

(j, `) 6= (s + 1, s + 1),
C1 = us+1,s+1C1, C2 = us+1,s+1C2, C3 = us+1,s+1C3,bi = us+1,s+1bi, 1 ≤ i ≤ s.

We also obtain the same pole by setting aj` = us+1,s+1 for any (j, `).
Substituting our new variables into Equation (4) implies

Φ′′ = u2
11 · · · u2

ssu
2
s+1,s+1(||C1||2 + ||C2||2 + ||C3||2 +

s∑

i=1

||bi||2 + ||
s∑

i=1

biDi

+
(

bs+1 B(s+2)
) (

1 ãs+1

as+1 A(s+2)

)
||2)

= u2
11 · · · u2

ssu
2
s+1,s+1(||C1||2 + ||C2||2 + ||C3||2 +

s∑

i=1

||bi||2 + ||
s∑

i=1

biDi

+
(

bs+1 + B(s+2)as+1 0
)

+
(

bs+1 B(s+2)
) (

0
ãs+1

A(s+2)

)
||2),

where ãs+1 = (as+1,s+2 · · · as+1,M−r) and as+1 = (as+2,s+1 · · · aH−r,s+1)
T .

Denote the first column of Di by Col1(Di). Let Di = (Col1(Di) D′
i).

Put bs+1 = bs+1 + B(s+2)as+1 +
∑s

i=1 biCol1(Di). Then

Φ′′/u2
11 · · · u2

s+1,s+1
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= ||C1||2 + ||C2||2 + ||C3||2 +
s∑

i=1

||bi||2 + ||bs+1||2 + ||
s∑

i=1

biD
′
i

+
(

bs+1 −B(s+2)as+1 −∑s
i=1 biCol1(Di) B(s+2)

) (
ãs+1

A(s+2)

)
||2

= ||C1||2 + ||C2||2 + ||C3||2 +
s+1∑

i=1

||bi||2 + ||
s∑

i=1

biD
′
i + (bs+1

−
s∑

i=1

biCol1(Di) 0)

(
ãs+1

A(s+2)

)

+
(
−B(s+2)as+1 B(s+2)

) (
ãs+1

A(s+2)

)
||2

= ||C1||2 + ||C2||2 + ||C3||2 +
s+1∑

i=1

||bi||2 + ||
s∑

i=1

bi(D
′
i − Col1(Di)ãs+1)

+bs+1ãs+1 + B(s+2)(−as+1, E)

(
ãs+1

A(s+2)

)
||2

= ||C1||2 + ||C2||2 + ||C3||2 +
s+1∑

i=1

||bi||2 + ||
s∑

i=1

bi(D
′
i − Col1(Di)ãs+1)

+bs+1ãs+1 + B(s+2)(−as+1ãs+1 + A(s+2))||2.

Now let A(s+2) = −as+1ãs+1 + A(s+2). Then,

Φ′′/u2
11 · · ·u2

s+1,s+1

= ||C1||2 + ||C2||2 + ||C3||2 +
s+1∑

i=1

||bi||2

+||
s∑

i=1

bi(D
′
i − Col1(Di)ãs+1) + bs+1ãs+1 + B(s+2)A(s+2)||2.

The Jacobian is u
`(0)
11 · · ·u`(s)

s+1,s+1.
Repeat this whole process by setting

Di = D′
i − Col1(Di)ãs+1 (1 ≤ i ≤ s) and Ds+1 = ãs+1.(5)

Then, s will be replaced by s + 1 in (4) and so on.
Therefore we obtain poles

−`(s) + 1

2
,

for s = 0, · · · , min{H − r,M − r}.
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(i) If M+H−N−r
2

< 0 then the maximum pole at s = 0 is

−HM −Hr + Nr

2
,

and its order m is 1.
(ii) If 0 ≤ M+H−N−r

2
≤ min{H − r,M − r} and M + H −N − r is even

then the maximum pole at s = M+H−N−r
2

is

−−(H + r)2 −M2 −N2 + 2(H + r)M + 2(H + r)N + 2MN

8
,

and its order m is 1.
(iii) If 0 ≤ M+H−N−r

2
≤ min{H − r,M − r} and M + H −N − r is odd

then the maximum pole at s = M+H−N+1−r
2

and M+H−N−1−r
2

is

−−(H + r)2 −M2 −N2 + 2(H + r)M + 2(H + r)N + 2MN + 1

8
,

and its order m is 2.
(iv) If M+H−N−r

2
> min{H − r,M − r} and H ≤ M then the maximum

pole at s = H − r is

−HN −Hr + Mr

2
,

and its order m is 1.
(v) If M+H−N−r

2
> min{H − r,M − r} and M < H then the maximum

pole at s = M − r is

−MN

2
,

and its order m is 1.
So Main Theorem follows.

Remark 1
Let g(w) be a C∞− function with compact support W and g(w0) 6= 0

for a fixed parameter w0 ∈ W . Let f1(w), f2(w) be analytic functions of
w ∈ W with f1(w0) = f2(w0) = 0. Assume that 0 ≤ αf1 ≤ f2 ≤ βf1 for any
constants α > 0 and β > 0.

By the assumption together with the Hironaka’s theorem, we have a
proper analytic map µ from an analytic manifold U to a neighborhood V
of w0 satisfying the followings;

(1) µ : U − E → V − f−1
1 (0) is an isomorphism, where E = µ−1(f−1

1 (0)).
(2) For each u ∈ U , there is a local analytic coordinate (u1, · · · , ud) such

that f1(µ(u)) = u2s1
1 u2s2

2 · · · u2sd
d f ′1 and f2(µ(u)) = u2s1

1 u2s2
2 · · ·u2sd

d f ′2, where
s1, · · · , sd are non-negative integers and f ′1 6= 0, f ′2 6= 0.
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The Jacobian of µ is Jµ(u1, · · · , ud) = um1
1 · · · umd

d J̃µ(u1, · · · , ud), where
m1, · · · ,md are non-negative integers and J̃π(0, · · · , 0) 6= 0.

Then,
∫
W f1(w)zg(w)dw and

∫
W f2(w)zg(w)dw have poles

−m1 + 1

2s1

, . . . ,−md + 1

2sd

.

Remark 2

The blowing-up computation in the proof of Main Theorem shows that∫
W ′ Φ′zψ′dw′ have always poles − `(s)+1

2
for any ψ′ with ψ′(A0, B0) > 0. Fur-

thermore, there is a maximum among the poles − `(s)+1
2

. From Remark 1,∫
W Φzψdw and

∫
W ′ Φ′zψ′dw′ have poles − `(s)+1

2
. Note that

∫
W Φzψdw and∫

W ′ Φ′zψ′dw′ have many other poles than − `(s)+1
2

.

5 Discussion and Conclusion

In this paper, we introduce a computational method to obtain the poles of
the zeta functions for the reduced rank regression model.

Note that if the rank r of A0B0 is zero, then H, M and N can be permuted
in the formula for λ in Main Theorem.

Figure 1 shows the graphs of the maximum poles λ with λ-values in y-
axis and H-values in x-axis, when M = N = 10 and r = 0. It is clear that
the curve is not linear. If the reduced rank approximation was a regular
statistical model, λ would be (M + N)H/2 and linear. The behaviors of λ
for regular and no-regular models are so different.

In this paper, we assume that
∫
(y|x)2q(x)dx = 0 for all vector y ∈ RM ,

if and only if y = 0. If
∫
(y0|x)2q(x)dx = 0 for some y0 6= 0 ∈ RM , then q(x)

is the function defined on the hypersurface (y0|x) = 0. Then the dimension
becomes M − 1. So the assumption is natural.

Algebraic methods can be effectively used to solve the problems in Learn-
ing theory.

The method would be useful to calculate the asymptotic form for not
only the reduced rank regression model but also other cases. Our aim is to
develop a mathematical theory in that context.
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Figure 1: The curve of λ-values in y-axis and H-values in x-axis, when
M = N = 10.


