A Singular Limit Theorem in Statistical Learning Theory

Sumio Watanabe

P&I Lab, Tokyo Institute of Technology

1. Statistical Learning

Let X be an \mathbb{R}^N valued random variable which is subject to the probability distribution q(x)dx. Assume that $D_n = (X_1, X_2, ..., X_n)$ is a set of random variables which are independently subject to the same probability distribution as X. A statistical model p(x|w) is defined as a probability density function of $x \in \mathbb{R}^N$ for a given parameter $w \in W \subset \mathbb{R}^d$. Let $\varphi(w)dw$ be a probability distribution on an open set W with compact support. The a posteriori distribution with the inverse temperature $\beta > 0$ is defined by

$$p(w|D_n)dw = \frac{1}{Z} \exp(-\beta H_n(w)) \varphi(w) dw$$

where $H_n(w) = -\sum_{i=1}^n \log p(X_i|w)$ and Z is a normalizing constant. Let $E_w[\]$ be the expectation value using $p(w|D_n)dw$. The generalization error G and the training error T are respectively defined by

$$G = -E_X \Big[\log E_w[p(X|w)] \Big],$$

$$T = -\frac{1}{n} \sum_{i=1}^{n} \log E_w[p(X_i|w)].$$

In this report, we show that G and T are asymptotically determined by two birational invariants. Let $f(x, w) = \log(q(x)/p(x|w))$. Also let $S = -E_X[\log q(X)]$ and $S_n = -(1/n)\sum_i \log q(X_i)$. Then $K(w) = \int q(x)f(x,w)dx$ is a nonnegative function and

$$G = S - E_X \left[\log E_w [\exp(-f(X, w))] \right],$$

$$T = S_n - \frac{1}{n} \sum_{i=1}^n \log E_w [\exp(-f(X_i, w))].$$

Therefore asymptotic behaviors of G and T are given by the limit theorem of the average and empirical free energies. In statistical learning theory, the set $\{w \in W ; K(w) = 0\}$ is a nonempty analytic set with singularities in general, resulting that $\exp(-\beta H_n(w))$ cannot be approximated by any gaussian distribution.

2. Two Birational Invariants

Let $L^s(q)$ $(s \ge 2)$ be a real Banach space

$$L^{s}(q) = \{ f(x) ; \int |f(x)|^{s} q(x) dx < \infty \}.$$

Assume that $w \mapsto f(x, w)$ is an $L^s(q)$ -valued analytic function on W. By using resolution of singularities, there exist a manifold \mathcal{M} and a real analytic map $g : \mathcal{M} \to W$ such that, in each local coordinate of \mathcal{M} ,

$$K(g(u)) = u^{2k} \equiv u_1^{2k_1} u_2^{2k_2} \cdots u_d^{2k_d},$$

$$\varphi(g(u))|g'(u)| = u^k \phi(u) \equiv u_1^{h_1} u_2^{h_2} \cdots u_d^{h_d} \phi(u),$$

where $k = (k_1, k_2, ..., k_d)$ and $h = (h_1, h_2, ..., h_d)$ are sets of nonnegative integers, |g'(u)| is the Jacobian determinant of w = g(u), and $\phi(u) > 0$. Let $\{\alpha\}$ be a set of local coordinates of \mathcal{M} . The log canonical threshold λ is defined by

$$\lambda = \min_{\alpha} \min_{j=1}^{d} \left(\frac{h_j + 1}{2k_i} \right),$$

where we put $(h_j + 1)/k_j = \infty$ for $k_j = 0$. Let $\{\alpha^*\}$ be the set of all local coordinates in which the above minimum is attained. Since f(x, g(u)) is an analytic function on \mathcal{M} , there exists an $L^s(q)$ -valued analytic function a(x, u) such that $f(x, g(u)) = a(x, u)u^k$. Let $\xi(u)$ be a gaussian field on \mathcal{M} which is uniquely determined by its expectation and covariance,

$$E_{\xi}[\xi(u)] = 0, \quad E_{\xi}[\xi(u)\xi(v)] = E_X[a(X,u)a(X,v)] - E_X[a(X,u)]E_X[a(X,v)].$$

The singular fluctuation ν is defined by

$$\nu = \frac{\beta}{2} E_{\xi} E_X \left[\langle a(X, u)^2 t \rangle - \langle a(X, u) \sqrt{t} \rangle^2 \right],$$

where $\langle \ \rangle$ shows the expetation value over a renormalized a posteriori distribution,

$$\langle F(u,t)\rangle = \frac{\sum_{\alpha^*} \int dt \int du^* \ F(u,t) \ t^{\lambda-1} \exp(-\beta t - \beta \sqrt{t} \xi(u))}{\sum_{\alpha^*} \int dt \int du^* \ t^{\lambda-1} \exp(-\beta t - \beta \sqrt{t} \xi(u))},$$

where du^* is a measure whose support is contained in the set $\{u \in \mathcal{M}; K(g(u)) = 0\}$. Note that neither λ nor ν depends on the choice of desingularization (\mathcal{M}, g) , hence they are birational invariants.

Theorem. The following asymptotic expansions hold as $n \to \infty$,

$$E[G] = S + \left(\frac{\lambda - \nu}{\beta} + \nu\right) \frac{1}{n} + o(\frac{1}{n}),$$

$$E[T] = S + \left(\frac{\lambda - \nu}{\beta} - \nu\right) \frac{1}{n} + o(\frac{1}{n}).$$

3. Application to statistics

The functional variance V is defined by

$$V = \sum_{i=1}^{n} \left\{ E_w[(\log p(X_i|w))^2] - E_w[\log p(X_i|w)]^2 \right\}.$$

Then $E[V] \to 2\nu/\beta$. Hence we can estimate E[G] from E[T] and E[V] without any knowledge of q(x), by equation of state in statistical learning,

$$E[G] = E[T] + \frac{\beta}{n}E[V] + o(\frac{1}{n}).$$

This equation holds for an arbitrary $(q(x), p(x|w), \varphi(w))$, which can be understood as the equation of state for Boltzmann distribution $p(w|D_n)$ with random Hamiltonian $H_n(w)$.

References

[1] S. Watanabe, "Algebraic geometry and statistical learning theory," Cambridge University Press, 2009.