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1. Statistical Learning

Let X be an RY valued random variable which is subject to the probability distribution
q(z)dz. Assume that D, = (X1, Xs, ..., X,,) is a set of random variables which are inde-
pendently subject to the same probability distribution as X. A statistical model p(z|w)
is defined as a probability density function of € R for a given parameter w € W C R,
Let ¢(w)dw be a probability distribution on an open set W with compact support. The
a posteriori distribution with the inverse temperature 5 > 0 is defined by

p(wl D) = - exp(—(3H, () p(w) du

where H,(w) = — > log p(X;|lw) and Z is a normalizing constant. Let E,[ | be the
expectation value using p(w|D,,)dw. The generalization error G and the training error T’
are respectively defined by

G = ~Ex|log Eulp(X|w)],

1
T = — log Ey[p(X;
2 Dt Bulp(Xi o)

In this report, we show that G and T are asymptotically determined by two birational
invariants. Let f(z,w) = log( (x )/p(q:|w)) Also let S = —Ex[logq(X)] and S, =
—(1/n) >, 1log q(X;). Then K(w) = [ g(z)f(z,w)dx is a nonnegative function and

G = S—EX[long[exp(—f(X,w))],
T = Sn—%Zlong[exp(—f(Xi,w))].

Therefore asymptotic behaviors of G and 7" are given by the limit theorem of the average
and empirical free energies. In statistical learning theory, the set {w € W ; K(w) = 0}
is a nonempty analytic set with singularities in general, resulting that exp(—GH,(w))
cannot be approximated by any gaussian distribution.

2. Two Birational Invariants
Let L*(q) (s > 2) be a real Banach space

L(g) = {f(x) - / (@) q(x)dz < oo},

Assume that w — f(x,w) is an L*(g)-valued analytic function on W. By using resolution
of singularities, there exist a manifold M and a real analytic map g : M — W such that,
in each local coordinate of M,

K(g(w) = u =g uf,
|

= ukcb( ) = uiuy® - gt olu),



where k = (ky, ka, ..., kq) and h = (hq, ha, ..., hy) are sets of nonnegative integers, |¢'(u)| is
the Jacobian determinant of w = g(u), and ¢(u) > 0. Let {a} be a set of local coordinates
of M. The log canonical threshold X is defined by
d 11
A= minmin(hj + ),
a j=1 2]{]
where we put (h; + 1)/k; = oo for k; = 0. Let {a*} be the set of all local coordinates
in which the above minimum is attained. Since f(z,g(u)) is an analytic function on M,

there exists an L*(g)-valued analytic function a(z,u) such that f(z,g(u)) = a(x,u)ut.

Let &(u) be a gaussian field on M which is uniquely determined by its expectation and
covariance,

Eel¢(u)] =0, El{(u)(v)] = Ex[a(X, u)a(X, v)] = Ex[a(X, u)]|Ex[a(X, )]

The singular fluctuation v is defined by

v = 2Bk [(a(X, 00 — (a(X,0)VE?)

where ( ) shows the expetation value over a renormalized a posteriori distribution,

S [dt [dut Fu,t) " Yexp(—pt — BVEE(u))
oo [ dt [ dur tP—Texp(—p3t — BVEE(u)) ’

where du* is a measure whose support is contained in the set {u € M; K(g(u)) = 0}.

(F(u,t)) =

Note that neither A nor v depends on the choice of desingularization (M, g), hence they
are birational invariants.

Theorem. The following asymptotic expansions hold as n — oo,

ElG] = s+(%+u)%+o(%),
BT - S+(Agy—u)%+o(%).

3. Application to statistics
The functional variance V' is defined by

V= Z{ [(log p(Xi|w))?] = Eu[log p(Xilw))? }.

Then E[V] — 2v/f. Hence we can estimate E[G] from E[T] and E[V] without any
knowledge of ¢(x), by equation of state in statistical learning,

1
E|G) = E[T] + gE[V] + O(E).
This equation holds for an arbitrary (¢(x), p(z|w), ¢(w)), which can be understood as the
equation of state for Boltzmann distribution p(w|D,,) with random Hamiltonian H,(w).
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